scholarly journals Soil chemical properties under a no-tillage system: Forage grass seeding modes of gender urochloa intercropped with maize

2016 ◽  
Vol 11 (50) ◽  
pp. 5050-5058
Author(s):  
Ricardo Alves dos Santos Paulo ◽  
Edcarla de Araujo Nicolau Francisca ◽  
Queiroz Amorim Marcelo ◽  
de Araujo Mendonça Clice ◽  
Evanaldo Lima Lopes Jose ◽  
...  
Author(s):  
Amanda Letícia Pit Nunes ◽  
Glassys Louise de Souza Cortez ◽  
Thadeu Rodrigues Melo ◽  
Alex Figueiredo ◽  
Cassio Alexandre Rolan Wandscheer ◽  
...  

Abstract: The objective of this work was to evaluate the effect of different farm systems on clay dispersion and its relationship with soil chemical properties and the no-tillage system participatory quality index (IQP), in watershed areas in the west of the state of Paraná, Brazil. The farm systems evaluated were: no-tillage; no-tillage with crop succession; no-tillage with soil disturbance; and conventional system. In addition, the farm systems were evaluated for their IQP. Soil samples were collected at 0.0-0.20-m soil depth, in 40 agricultural areas and in 6 native forests considered as references. The degree of clay dispersion, total organic carbon, pH (CaCl2), exchangeable potassium (K+), available phosphorus (P), exchangeable calcium and magnesium (Ca2++Mg2+), and potential acidity (H+Al3+) were determined. A linear multiple regression model was fitted by the method of least squares. The averages of clay dispersion degree per watershed were compared at 5% probability. The farm systems were compared by Scott-Knott’s test. Soil chemical properties showed a higher influence on clay dispersion than the different farm systems assessed. The no-tillage system alone showed the highest content of organic carbon, which was similar to those of the native areas. The conventional system and the no-tillage system with soil disturbance showed a lower IQP and a higher degree of clay dispersion than the areas with the no-tillage system alone. The IQP allows distinguishing the conventional system from the no-tillage system.


2021 ◽  
Vol 208 ◽  
pp. 104897
Author(s):  
Monique Souza ◽  
Vilmar Müller Júnior ◽  
Claudinei Kurtz ◽  
Barbara dos Santos Ventura ◽  
Cledimar Rogério Lourenzi ◽  
...  

2016 ◽  
Vol 37 (1) ◽  
pp. 95 ◽  
Author(s):  
Lucindo Somavilla ◽  
Marlo Adriano Bison Pinto ◽  
Claudir José Basso ◽  
Clovis Orlando Da Ros ◽  
Vanderlei Rodrigues da Silva ◽  
...  

Agricultural gypsum is considered an important tool in the improvement of soil chemical properties; however, crop responses to its application are contradictory. Studies have shown that the physical effects of soil mechanical intervention is short-lasting and has little impact on grain yield. Therefore, the aim of this study was to investigate corn and soybean response to soil mechanical interventions and to the application of agricultural gypsum to soil surface. The experiment involved cultivation of two crops each of soybean (i. e., 2009/2010 and 2011/2012 crop years) and corn (i. e., 2010/2011 and 2012/2013 crop years) with application of agricultural gypsum (0, 2, 4 and 6 Mg ha-1) to the soil surface during the winter of 2009, after 12 years under continuous no-tillage system and two types of mechanical intervention: chisel plowing and plowing+harrowing. Soybean responded to mechanical interventions conducted in an area under continuous no-tillage system, but showed an increase of only 10% (114 kg ha-1) in the grain yield with the use of agricultural gypsum in the 2011/2012 crop year. Gypsum caused a higher increase in the grain yield of corn than that of soybean. Moreover, the crop response to gypsum application varied considerably in the 2010/2011 crop year after mechanical interventions under continuous no-tillage cultivation.


2012 ◽  
Vol 36 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Adolfo Valente Marcelo ◽  
José Eduardo Corá ◽  
Newton La Scala Junior

Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.


2001 ◽  
Vol 36 (12) ◽  
pp. 1539-1545 ◽  
Author(s):  
Maria Alexandra Reis Valpassos ◽  
Eloiza Gomes Silva Cavalcante ◽  
Ana Maria Rodrigues Cassiolato ◽  
Marlene Cristina Alves

The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.


2017 ◽  
Vol 7 (4) ◽  
pp. 473
Author(s):  
Diego Bortolini ◽  
Luís César Cassol ◽  
Jonatas Thiago Piva ◽  
Cristiam Bosi ◽  
Kassiano Felipe Rocha

The aim of this study was to evaluate the behavior of chemical properties and crop yields during five years after liming, in a consolidated no-tillage system area and indicate a base saturation index to serve as a criterion for recommendation. The experiment was conducted in a randomized complete block design with four repetitions, being the treatments the five lime doses (0, 2.4, 4.8, 7.2 and 9.6 Mg ha-1) applied and maintained on the soil surface. Soil chemical properties were evaluated in eight soil sampling, in the layers 0 to 0.025; 0.025 to 0.05; 0.05 to 0.10; 0.10 to 0.15; 0.15 to 0.20 and 0.20 to 0.40 m, besides crop grain yield (wheat, soybean and corn) and black oat dry matter yield, totaling five years of evaluation. The surface liming in no-tillage system increased the exchangeable magnesium and calcium contents, base saturation and soil pH and reduced the exchangeable aluminum content. The cumulative grain yield (six crops) and black oat dry matter yield (three crops) was not influenced by liming. These results suggested, from this study conditions, that the value of 50% of base saturation should be adopted as a criterion for liming for crops implanted under consolidated no-tillage systems.


Sign in / Sign up

Export Citation Format

Share Document