scholarly journals Diallel analysis of scald and net blotch resistance in barley (Hordeum vulgare L.)

2019 ◽  
Vol 11 (6) ◽  
pp. 164-172
Author(s):  
Jalata Zerihun ◽  
Mekbib Firew ◽  
Lakew Berhane ◽  
Ahmed Seid
1998 ◽  
Vol 78 (2) ◽  
pp. 217-222 ◽  
Author(s):  
M. J. Edney ◽  
T. M. Choo ◽  
D. Kong ◽  
T. Ferguson ◽  
K. M. Ho ◽  
...  

Kernel colour is an important marketing trait for both malting and feed barleys. Therefore a study was initiated to investigate the kernel colour of 75 Canadian barley (Hordeum vulgare L.) cultivars at three locations (Charlottetown, Ottawa and Bentley) across Canada in 1991 and 1992. Kernel colour was measured by an Instrumar Colormet Spectrocolorimeter. Kernel colour was found to be brighter at the two locations in eastern Canada (Charlottetown and Ottawa) than at the location in western Canada (Bentley). Two-row cultivars on average were more discoloured than six-row cultivars; eastern two-row were more discoloured than western two-row. Covered barleys were less discoloured than hulless barleys in five of the six environments, but covered barleys at Bentley in 1992 were more discoloured than hulless barleys. Kernel discolouration appeared to be associated with susceptibility to net blotch for six-row cultivars. More studies are needed on kernel discolouration of barley. Key words: Barley, Hordeum vulgare, kernel colour


2016 ◽  
Vol 96 (3) ◽  
pp. 367-370
Author(s):  
Thin Meiw Choo ◽  
Allen G. Xue ◽  
Richard A. Martin

AAC Vitality is a six-row spring feed barley (Hordeum vulgare L.) cultivar developed by the Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada. AAC Vitality had high grain yield, good resistance to lodging, and good resistance to straw break. It was late in heading and maturity. Its seed color was bright. AAC Vitality was moderately resistant to net blotch and spot blotch. AAC Vitality performs well in Ontario.


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 865-869 ◽  
Author(s):  
T. M. Choo ◽  
E. Reinbergs ◽  
P. Y. Jui

A study was conducted in barley (Hordeum vulgare L.) to compare the relative magnitudes of heterosis to additive × additive epistasis and to compare F2 and F∞, diallel analyses. Both F2 and F∞, progenies were derived from 7 × 7 diallel crosses. Progenies and their parents were evaluated for grain yield, heading date, plant height, and the number of spikes per hill in hill plots with five replications at Elora (Ontario) in 1978. Results suggested that additive × additive epistasis were present for these traits and its magnitude was similar to that of heterosis estimated in F2. Both F2 and F∞ analyses detected the presence of epistasis. Both analyses provided similar estimates of the additive genetic variance for heading date and the number of spikes per hill, but the F2 analysis provided higher estimates than the F∞ analysis for grain yield and plant height. The estimate for grain yield and plant height obtained from the F2 analysis could be biased upward because of the invalid assumption of no epistasis. Estimates of other genetic variance components from the F2 analysis could be biased also. The F∞ diallel analysis not only provided estimates of additive × additive genetic variance for the four traits, it also allowed detection of nonindependent gene distribution in the parents for three of the four traits. Therefore, the limitations of the F2 diallel analysis in the presence of epistasis were apparent in the study. The F2 diallel analysis, however, could be used to detect dominance and maternal effects and thus to complement the F∞ diallel analysisKey words: barley, Hordeum vulgare, diallels, haploids, epistasis, heterosis.


1996 ◽  
Vol 76 (4) ◽  
pp. 715-719 ◽  
Author(s):  
K.M. Ho ◽  
T.M. Choo ◽  
A. Tekauz ◽  
R.A. Martin

An investigation was initiated to study the genetics of resistance to three isolates of Pyrenophora teres (WRS102, WRS858, and WRS857), which have been routinely used for screening for net blotch resistance in Canada. The F1, F2, and doubled-haploid lines were derived from a Leger/CI9831 cross of barley (Hordeum vulgare L.). These materials, along with their parents, were inoculated with each of the three isolates at the three-leaf stage in growth chambers. Results showed that resistance to WRS102 was controlled by three recessive genes, resistance to WRS858 by one recessive gene, and resistance to WRS857 by either one dominant gene or two complementary genes. One of the WRS102-resistance genes appeared to be on chromosome 2 and another linked to the WRS858-resistance gene. Resistance to these three isolates was not associated with awn type, esterase 1, and esterase 5. Selection for resistance to WRS102 and WRS858 would be more effective than selection for resistance to WRS857 in a conventional breeding program. Key words: Barley, Hordeum vulgare, net blotch, Pyrenophora teres, haploids


1987 ◽  
Vol 67 (3) ◽  
pp. 823-826 ◽  
Author(s):  
D. R. METCALFE

Ellice is a two-rowed malting barley (Hordeum vulgare L.) developed at the Agriculture Canada Research Station, Winnipeg, Manitoba from a cross involving CI5791, Parkland, Betzes, Piroline, Akka, Centennial, Klages, Cambrinus and Tern. This cultivar (registration no. 2715) is earlier and has better straw strength and malting quality than Klages. It has demonstrated yield potential equal to Klages and Harrington throughout the prairie provinces. It is resistant to stem rust and powdery mildew and tolerant to net blotch and the surface borne smuts. It is best adapted to the Black Soil Zone of Manitoba and eastern Saskatchewan.Key words: Malting barley, barley, Hordeum vulgare


Sign in / Sign up

Export Citation Format

Share Document