scholarly journals Thermodynamic Simulation of Phosphate Precipitation based on Ion-Selective Microelectrode Measurements

Author(s):  
Gustavo M. Platt ◽  
Ivan N. Bastos ◽  
Mônica C. de Andrade ◽  
Marina Taryba ◽  
Sviatlana V. Lamaka ◽  
...  
TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 595-602
Author(s):  
ALISHA GIGLIO ◽  
VLADIMIROS G. PAPANGELAKIS ◽  
HONGHI TRAN

The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.


Author(s):  
R.P. Merchan ◽  
M.J. Santos ◽  
A. Medina ◽  
A. Calvo

2009 ◽  
Vol 71-73 ◽  
pp. 437-440
Author(s):  
Lasse Ahonen ◽  
Pauliina Nurmi ◽  
Olli H. Tuovinen

Geochemical modeling program PHREEQC was used to simulate generic bioleaching processes. Carbonate minerals (e.g., calcite) dissolve in acid solution, increasing the solution pH and Ca concentration while the concentration of CO2 may be controlled by the equilibrium with the atmospheric CO2. Non-oxidative dissolution of Fe-monosulphides was demonstrated to release H2S and increase the pH. In the absence of ferric iron precipitation (goethite), the oxidation of pyrite decreased the solution pH from 2 to ~1.4, while the oxidation of Fe-monosulphide and chalcopyrite increased the solution pH to ~3.2-3.4. Assuming equilibrium precipitation of goethite, oxidative leaching decreased the solution pH for all three minerals from pH ~2 to ~0.9-1.2. Adjustment of the solution pH to 1.8 or 2.0 with KOH with concurrent equilibrium precipitation of K-jarosite resulted in low dissolved iron concentrations.


2016 ◽  
Vol 2016 (9) ◽  
pp. 864-868 ◽  
Author(s):  
O. V. Samoilova ◽  
G. G. Mikhailov ◽  
E. A. Trofimov ◽  
L. A. Makrovets

Sign in / Sign up

Export Citation Format

Share Document