conversion process
Recently Published Documents


TOTAL DOCUMENTS

876
(FIVE YEARS 206)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Vol 20 (4) ◽  
pp. 127-132
Author(s):  
Md Abdullah Al Rakib Rakib ◽  
Md. Saniat Rahman Zishan ◽  
Md. Abid Hasan Abid

In this project, heat energy is used for generatingelectrical energy by a conversion process. The energy harvestingfrom the heat of motorbike has become a new source of portableenergy for rechargeable gadgets. In contrary, the conventionalnonrenewable energy sources have likewise added to anexpansion in contamination on the planet and a disintegration ofhuman wellbeing. From the electrical energy, the mobile phonewill be charged. A thermoelectric generator has been connectedto the hot portion of the motorbike and while riding the bike, anykind of chargeable device will get charged. The prototype of thisresearch work has effectively harvested electrical energy fromheat using thermoelectric generator and has managed to provideenough power at different speeds of the motorbike.


Author(s):  
Vіacheslav Radovenchyk ◽  
Olena Ivanenko ◽  
Аnton Karvatskii ◽  
Іgor Mikulionok ◽  
Serhii Plashykhin ◽  
...  

The paper presents the results of a study of catalysts for the conversion of carbon monoxide based on aerated concrete, modified with magnetite and chromium ferrite separately and in aggregate. It was found that at a consumption of 100 g of catalyst powder per 1 dm3 of a typical mixture for producing aerated concrete and obtaining blocks of modified aerated concrete according to the traditional technology, their efficiency is 70-85% at 400 °C and decreases to 9-13% at 200 °C. In terms of strength and physicochemical properties, aerated concrete samples differ little from standard ones, and in some cases even exceed them. The proposed method for fixing catalyst particles in blocks of aerated concrete makes it possible to build fundamentally new schemes for neutralizing carbon monoxide when placing modified blocks directly at the loading of electrode raw materials in furnaces. This greatly simplifies the conversion process and its control system.


Author(s):  
J. J. Fernández

AbstractWe use a two-level energy model to understand the conversion process that takes place in thermoradiative cells and to compare it with the conversion process that happens in photovoltaic cells. In this way, we show that in both kinds of converters the conversion process can be studied as the succession of a change in the populations of the levels that occur at constant chemical potential and a change in the value of the chemical potential of the two levels that happens while keeping their populations constant. As an application of the model, we will discuss why in thermoradiative cells the open-circuit voltage is negative while it is positive in photovoltaic cells. We also show that the expression for the open-circuit voltage is the same in both kinds of cells but that due to the values of the temperatures it is negative in thermoradiative cells and positive in photovoltaic ones.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8267
Author(s):  
Konrad Jurasz ◽  
Dariusz Kościelnik ◽  
Jakub Szyduczyński ◽  
Marek Miśkowicz

This paper presents a systematization and a comparison of the binary successive approximation (SA) variants. Three different variants are distinguished and all of them are applied in the analog-to-digital conversion. Regardless of an analog-to-digital converter circuit solution, the adoption of the specific SA variant imposes a particular character of the conversion process and related parameters. One of them is the ability to direct conversion of non-removeable physical quantities such as time intervals. Referencing to this aspect a general systematization of the variants and a name for each of them is proposed. In addition, the article raises the issues related to the complexity of implementation and energy consumption for each of the discussed binary SA variants. 


2021 ◽  
Vol 5 (4) ◽  
pp. 456-464
Author(s):  
Zijie Wang ◽  
Jun Yao ◽  
Xia Yan ◽  
Hai Sun ◽  
Yongfei Yang

2021 ◽  
pp. 118717
Author(s):  
Ali Hajjiah ◽  
Roanne Ibrahim ◽  
Nihal Ibrahim ◽  
Mohammed Gamal ◽  
S.A. Elrafei ◽  
...  

Author(s):  
Anna Chiara Uggenti ◽  
Raffaella Gerboni ◽  
Andrea Carpignano ◽  
Gabriele Ballocco ◽  
Andrea Tortora ◽  
...  

Abstract In the framework of energy transition, a focus is given to the study of the conversion of offshore Oil&Gas platforms at the end of their life due to depletion of the reservoirs on which they operate. Their modular and versatile structure allows the implementation of new processes and innovative sustainable technologies for reducing the environmental impact of a complete decommissioning, especially on the subsea ecosystem that has grown around the jacket, and for guaranteeing costsaving solutions. Among different conversion options, this paper focuses on the installation on the platform of a system for the production of photovoltaic (PV) energy to be used for seawater desalination and its delivery to other platforms operating in the same area. The project focuses on the definition of technical characteristics of the basic design, on the investigation of the technical feasibility of the conversion process, on qualitative safety and environmental impact studies. Moreover, the old platform equipment to be decommissioned (ie. the equipment necessary for hydrocarbons treatment) are identified and the installation of new equipment is optimized, eg. the number of PV panels and, therefore, the installed power are maximized. At the same time, decommissioning costs and impacts can be minimized. The basic design is completed with a preliminary structural verification to guarantee that critical situations do not rise, with an indication on the main maintenance activities for the preservation of plant good efficiency and with safety and environmental preliminary analyses for the identification of potential criticalities to be managed at different design levels.


Sign in / Sign up

Export Citation Format

Share Document