Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: Synthesis, characterization and thermodynamic simulation

2021 ◽  
Vol 275 ◽  
pp. 122157
Author(s):  
Rui Xiao ◽  
Pawel Polaczyk ◽  
Xi Jiang ◽  
Miaomiao Zhang ◽  
Yanhai Wang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jayvant Choudhary ◽  
Brind Kumar ◽  
Ankit Gupta

Today, researchers around the globe are looking for suitable alternatives of conventional fillers which can form flexible pavements with satisfactory engineering performance in an environmental friendly and cost-effective manner. This study investigated the engineering, economical, and environmental viability of recycling waste glass powder (GP) and glass-hydrated lime (GL) composite as alternative fillers, in place of stone dust (SD). All fillers were characterized, and asphalt concrete mixes incorporating them at different proportions (4–8.5%) were designed using the Marshall mix design method. The engineering performance of asphalt mixes was analyzed using the static creep analysis, indirect tensile fatigue test, Cantabro test, modified Lottman test, resilient modulus test, mixing time analysis, and boiling water test. Additionally, the design of single km of two-lane flexible pavements utilizing aforesaid mixes was done as per the mechanistically empirical method suggested in IRC 37 guideline. Finally, the economic and environmental analysis was done by comparing their material cost and global warming potential (GWP). GL and GP mixes exhibited better resistance against rutting, fatigue, and low temperature cracking at lower optimum asphalt content than SD mixes. However, GP mixes also displayed poor moisture resistance and adhesion due to the high amount of silica in GP. GL mixes had satisfactory moisture resistance up to 7% filler content due to the fine nature and anti-stripping properties of hydrated lime. The pavement containing GL and GP fillers also reduced material cost and GWP up to 35% while consuming up to 74 tons of GP.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Oumaima Nasry ◽  
Abderrahim Samaouali ◽  
Sara Belarouf ◽  
Abdelkrim Moufakkir ◽  
Hanane Sghiouri El Idrissi ◽  
...  

This study aims to provide a thermophysical characterization of a new economical and green mortar. This material is characterized by partially replacing the cement with recycled soda lime glass. The cement was partially substituted (10, 20, 30, 40, 50 and 60% in weight) by glass powder with a water/cement ratio of 0.4. The glass powder and four of the seven samples were analyzed using a scanning electron microscope (SEM). The thermophysical properties, such as thermal conductivity and volumetric specific heat, were experimentally measured in both dry and wet (water saturated) states. These properties were determined as a function of the glass powder percentage by using a CT-Meter at different temperatures (20 °C, 30 °C, 40 °C and 50 °C) in a temperature-controlled box. The results show that the thermophysical parameters decreased linearly when 60% glass powder was added to cement mortar: 37% for thermal conductivity, 18% for volumetric specific heat and 22% for thermal diffusivity. The density of the mortar also decreased by about 11% in dry state and 5% in wet state. The use of waste glass powder as a cement replacement affects the thermophysical properties of cement mortar due to its porosity as compared with the control mortar. The results indicate that thermal conductivity and volumetric specific heat increases with temperature increase and/or the substitution rate decrease. Therefore, the addition of waste glass powder can significantly affect the thermophysical properties of ordinary cement mortar.


2021 ◽  
Vol 297 ◽  
pp. 123769
Author(s):  
Saofee Dueramae ◽  
Sasipim Sanboonsiri ◽  
Tanvarat Suntadyon ◽  
Bhassakorn Aoudta ◽  
Weerachart Tangchirapat ◽  
...  

2021 ◽  
Vol 280 ◽  
pp. 122425
Author(s):  
Ebenezer O. Fanijo ◽  
Emad Kassem ◽  
Ahmed Ibrahim

2021 ◽  
Vol 13 (7) ◽  
pp. 3979
Author(s):  
Rosa María Tremiño ◽  
Teresa Real-Herraiz ◽  
Viviana Letelier ◽  
Fernando G. Branco ◽  
José Marcos Ortega

One of the ways of lessening the CO2 emissions of cement industry consists of replacing clinkers with supplementary cementitious materials. The required service life of real construction elements is long, so it is useful to characterize the performance of these materials in the very long term. Here, the influence of incorporating waste glass powder as a supplementary cementitious material, regarding the microstructure and durability of mortars after 1500 hardening days (approximately 4 years), compared with reference mortars without additions, was studied. The percentages of clinker replacement by glass powder were 10% and 20%. The microstructure was studied using impedance spectroscopy and mercury intrusion porosimetry. Differential thermal and X-ray diffraction analyses were performed for assessing the pozzolanic activity of glass powder at the end of the time period studied. Water absorption after immersion, the steady-state diffusion coefficient, and length change were also determined. In view of the results obtained, the microstructure of mortars that incorporated waste glass powder was more refined compared with the reference specimens. The global solid fraction and pores volume were very similar for all of the studied series. The addition of waste glass powder reduced the chloride diffusion coefficient of the mortars, without worsening their behaviour regarding water absorption after immersion.


Sign in / Sign up

Export Citation Format

Share Document