Expanding the Limits of the Calculator Display

1986 ◽  
Vol 79 (1) ◽  
pp. 20-21
Author(s):  
Laurence Sherzer

The decimal expansions of 1/7 or 5/13 can be found immediately on the average electronic calculator. These decimal expansions are limited to six digits before they begin to repeat. But what do we say to students who want to explore the repeating properties of rational numbers? What would we answer if they asked for the decimal expansion of 1/17 or 3/23? Do we just say, “Keep dividing and you'll find the answer”? Hardly. Long decimal expansions are usually left to actuaries who don't want to mismanage thousands of dollars over the life of an annuity or mortgage table, or to spacecraft engineers who don't want to miss their targets in outer space.

Author(s):  
Toshihiro Hadano ◽  
Yoshiyuki Kitaoka ◽  
Tomio Kubota ◽  
Michihiro Nozaki

Author(s):  
Rod Downey

In an unpublished manuscript Turing anticipated by nearly thirty years the basic ideas behind the theory of algorithmic randomness, using a computationally constrained version of ‘measure theory’ to answer a question posed by Émile Borel in number theory: this question concerned constructing what are called ‘absolutely normal’ numbers. In this chapter we explain what these mysterious terms mean, and what Turing did. Mathematicians have always been fascinated with patterns in numbers. At an early stage in our education we learn about the special nature of decimal expansions of ‘rational numbers’, fractions that we can write in the form m/n, for some whole numbers m and n with n ≠ 0. The Greeks proved that some numbers, such as √2, 3√7 and √2 + √3 are not rational—indeed, it can be shown that ‘most’ numbers (in a precise mathematical sense) are irrational. It can be shown that a real number is rational if and only if it has a finite decimal expansion, or a decimal expansion that repeats from some point onwards; for example, 1/4 = 0.25 and 3/7 = 0.428571 428571 428571... . Note that we can also think of 1/4 as a repeating decimal, 0.25000000. . . ; we can also write it as 0.24999999 ... , but for simplicity we ignore such ambiguities. We can also count using bases different from 10. The binary system uses base 2, where each place in the representation corresponds to a power of 2; for example, just as 2301 in the decimal system refers to (2 × 103) + (3 × 102) + (0 × 101) + (1 × 100), so in base 2 the decimal number 13 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) is represented by 1101. In base 3 we use only the numbers 0, 1, 2 and express numbers using powers of 3, so the decimal number 25 = (2 × 32) + (2 × 31) + (1 × 30) is represented by 221. Note that when we use bases larger than 10 we have to invent extra symbols to represent the larger ‘digits’; for example, in base 12 we might use the digits 0, 1, 2, . . . , 9, T, E, with T and E representing ‘ten’ and ‘eleven’.


2012 ◽  
Vol 96 (537) ◽  
pp. 408-414
Author(s):  
Daniel Shiu ◽  
Peter Shiu

Suppose that we have a computing machine that can only deal with the operations of addition, subtraction and multiplication, but not division, of integers. Can such a machine be used to find the decimal expansion of a given real number α to an arbitrary length? The answer is ‘yes’, at least in the sense that α is the limit of a sequence of rational numbers, and one can obtain the decimal expansion of a positive rational number a/b without division. For example, for any positive k, we try all non-negative c < b and d < 10ka, and see if 10ka = db + c. There will be success because all we are doing is reducing 10ka modulo b in a particularly moronic way. This guarantees the existence and uniqueness of d, and d/10k is then the desired expansion. Take, for example, = and k = 12; then, after a tedious search, we should find that, for c = 3, there is d = 230 769 230 769 because 3 × 1012 = 230769230769 × 13 + 3, so that = 0.230769230769 + × 10-12. Such a procedure of searching for c, d is hopelessly inefficient, of course, and a more efficient method is given in the next section.


Author(s):  
T. E. Mitchell ◽  
M. R. Pascucci ◽  
R. A. Youngman

1. Introduction. Studies of radiation damage in ceramics are of interest not only from a fundamental point of view but also because it is important to understand the behavior of ceramics in various practical radiation enyironments- fission and fusion reactors, nuclear waste storage media, ion-implantation devices, outer space, etc. A great deal of work has been done on the spectroscopy of point defects and small defect clusters in ceramics, but relatively little has been performed on defect agglomeration using transmission electron microscopy (TEM) in the same kind of detail that has been so successful in metals. This article will assess our present understanding of radiation damage in ceramics with illustrations using results obtained from the authors' work.


2004 ◽  
Vol 9 (4) ◽  
pp. 331-348
Author(s):  
V. Garbaliauskienė

A joint universality theorem in the Voronin sense for L-functions of elliptic curves over the field of rational numbers is proved.


2015 ◽  
Vol 21 (2(93)) ◽  
pp. 86-88
Author(s):  
N.R. Malysheva ◽  
◽  
V.V. Semenyaka ◽  
O.S. Stelmakh ◽  
◽  
...  
Keyword(s):  

2015 ◽  
Vol 52 (3) ◽  
pp. 350-370
Author(s):  
Jaroslav Hančl ◽  
Katarína Korčeková ◽  
Lukáš Novotný

We introduce the two new concepts, productly linearly independent sequences and productly irrational sequences. Then we prove a criterion for which certain infinite sequences of rational numbers are productly linearly independent. As a consequence we obtain a criterion for the irrationality of infinite products and a criterion for a sequence to be productly irrational.


Sign in / Sign up

Export Citation Format

Share Document