Radiation Damage in Ceramics

Author(s):  
T. E. Mitchell ◽  
M. R. Pascucci ◽  
R. A. Youngman

1. Introduction. Studies of radiation damage in ceramics are of interest not only from a fundamental point of view but also because it is important to understand the behavior of ceramics in various practical radiation enyironments- fission and fusion reactors, nuclear waste storage media, ion-implantation devices, outer space, etc. A great deal of work has been done on the spectroscopy of point defects and small defect clusters in ceramics, but relatively little has been performed on defect agglomeration using transmission electron microscopy (TEM) in the same kind of detail that has been so successful in metals. This article will assess our present understanding of radiation damage in ceramics with illustrations using results obtained from the authors' work.

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 546 ◽  
Author(s):  
Artem L. Kozlovskiy ◽  
Dmitriy. I. Shlimas ◽  
Inesh E. Kenzhina ◽  
Daryn B. Borgekov ◽  
Maxim V. Zdorovets

The use of nitride ceramics, in particular AlN, as structural materials for nuclear power is primarily limited by their resistance to swelling and hydrogenation processes due to the accumulation of poorly soluble helium and hydrogen ions in the structure of the surface layer. In this regard, research in this area is of great importance not only from a fundamental point of view, but also practical, since any new data on radiation resistance can make a great contribution to the development of the theory of resistance to radiation influences of structural materials of a new generation. This work is devoted to a systematic study and comparative analysis of the dynamics of radiation damage during high-dose irradiation with protons and helium ions in nitride ceramics, which have great potential for use as structural materials for GenIV reactors. The choice of irradiation doses of 1 × 1017–5 × 1017 ion/cm2 is due to the possibility of modeling the processes of radiation damage characteristic of displacements of 10–50 dpa. During the study, the dependences of the change in the dielectric and conductive characteristics of nitride ceramics depending on the radiation dose, as well as on the type of ions, were established. The kinetics of degradation and accelerated aging was determined depending on the type of exposure. The mechanical and strength properties of ceramics were determined.


Author(s):  
M. R. Pascucci ◽  
L. W. Hobbs ◽  
J. L. Hutchison

The irradiation-induced crystalline-to-amorphous transformation in quartz and other silicates has been investigated because of its importance to nuclear waste storage ard frequency control. The transformation to an amorphous (metamict) state is accompanied by up to 14% decrease in density.Recent in-situ electron damage studies of synthetic α-quartz using transmission electron microscopy have shown that the metamict transformation occurs in two stages at different rates: first, a rapid, heterogeneous nucleation of well-defined amorphous inclusions; and second, a more gradual, homogeneous loss of correlation in the surrounding matrix. The first stage initiates at doses less than ten times the second. Experiments at different electron energies have established that both stages can result from the ionizing component of the radiation alone. The proposed radiolytic damage mechanism involves localization of excitations resulting in bond breakage which provides the necessary topological freedom for reorientation of SiO4 tetrahedra. Water has been implicated in the first-stage heterogeneous nucleation.


Author(s):  
Robert C. Rau ◽  
John Moteff

Transmission electron microscopy has been used to study the thermal annealing of radiation induced defect clusters in polycrystalline tungsten. Specimens were taken from cylindrical tensile bars which had been irradiated to a fast (E > 1 MeV) neutron fluence of 4.2 × 1019 n/cm2 at 70°C, annealed for one hour at various temperatures in argon, and tensile tested at 240°C in helium. Foils from both the unstressed button heads and the reduced areas near the fracture were examined.Figure 1 shows typical microstructures in button head foils. In the unannealed condition, Fig. 1(a), a dispersion of fine dot clusters was present. Annealing at 435°C, Fig. 1(b), produced an apparent slight decrease in cluster concentration, but annealing at 740°C, Fig. 1(C), resulted in a noticeable densification of the clusters. Finally, annealing at 900°C and 1040°C, Figs. 1(d) and (e), caused a definite decrease in cluster concentration and led to the formation of resolvable dislocation loops.


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3358-3359
Author(s):  
Hyeokmin Choe ◽  
Eric Montgomery ◽  
Ilya Ponomarev ◽  
June Lau ◽  
Yimei Zhu ◽  
...  

2021 ◽  
Author(s):  
Ronald Joseph Turner ◽  
Pieter Bots ◽  
Alan Richardson ◽  
Paul Bingham ◽  
Alex Scrimshire ◽  
...  

(Hydroxy)apatite [Ca10(PO4)6(OH)2], has emerging potential as a cement coating material, with applications in environmental remediation, nuclear waste storage and architectural preservation. In these low temperature environments and when precipitating from...


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3709
Author(s):  
Bader Alshuraiaan ◽  
Sergey Pushkin ◽  
Anastasia Kurilova ◽  
Magdalena Mazur

Recently, issues related to the effects (benefit or harm) of processing nuclear waste and its further use as fuel have been increasingly often raised in the scientific discussion. In this regard, the research aims to investigate issues related to the assessment of the economic potential of nuclear waste use, as well as the cooperation between states in the context of the reduction of risks associated with nuclear waste storage and processing. The research methodology is based on an integrated approach, including statistical, factor analysis, and the proposed system of performance indicators for managing spent nuclear fuel use. The research was carried out on the basis of materials from Russia and the EU countries. In the course of the study, a model of cooperation between states has been developed (based on the example of technologies and methods of processing nuclear waste used in the EU and Russia) according to the nuclear waste (spent nuclear fuel) management algorithm. The model considers the risks and threats associated with ecology and safety. The developments and other results described in the study should be used in further research devoted to the use of nuclear waste as heat-producing elements.


2021 ◽  
Vol 570 ◽  
pp. 121016
Author(s):  
Akhilesh C. Joshi ◽  
Mainak Roy ◽  
Dimple P. Dutta ◽  
Raman K. Mishra ◽  
Sher Singh Meena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document