GAISE II: Bringing Data into Classrooms

2021 ◽  
Vol 114 (6) ◽  
pp. 424-435
Author(s):  
Anna Bargagliotti ◽  
Pip Arnold ◽  
Christine Franklin

The authors introduce the Pre-K–12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II): A Framework for Statistics and Data Science Education report.

2021 ◽  
pp. 0013189X2110488
Author(s):  
Victor R. Lee ◽  
Michelle Hoda Wilkerson ◽  
Kathryn Lanouette

There is growing interest in how to better prepare K–12 students to work with data. In this article, we assert that these discussions of teaching and learning must attend to the human dimensions of data work. Specifically, we draw from several established lines of research to argue that practices involving the creation and manipulation of data are shaped by a combination of personal experiences, cultural tools and practices, and political concerns. We demonstrate through two examples how our proposed humanistic stance highlights ways that efforts to make data personally relevant for youth also necessarily implicate cultural and sociopolitical dimensions that affect the design and learning opportunities in data-rich learning environments. We offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.


2019 ◽  
Vol 112 (6) ◽  
pp. 473-476 ◽  
Author(s):  
Gemma F. Mojica ◽  
Christina N. Azmy ◽  
Hollylynne S. Lee

Concord Consortium's Common Online Data Analysis Platform (CODAP), a free Web-based data tool designed for students in grades 6-12 and higher, is continuously being updated and developed for diverse projects in data science, science education, and mathematics/statistics education (https://codap.concord.org/). Teachers and students can access CODAP without downloading software or registering for accounts. Although some Web-based technology tools provide certain features for free and require users to pay a fee to use additional features, CODAP has no hidden costs. Devices need only be connected to the Internet using an updated Web browser (Chrome is preferred). CODAP is not optimized (yet) for use on such touchscreen devices as tablets or iPads®.


2021 ◽  
Vol 103 (1) ◽  
pp. 49-53
Author(s):  
Tanya LaMar ◽  
Jo Boaler

The COVID-19 global pandemic has required everyone to make sense of data about community spread, levels of risk, and vaccine efficacy. Yet research shows that students are underprepared in data literacy. Tanya LaMar and Jo Boaler argue that data science education provides an opportunity to address this problem while providing much needed updates to the current mathematics curriculum. The integration of data science can provide a more equitable mathematics pipeline than the calculus-focused pathway that has excluded most students from a future in mathematics. Through data science, students can learn to answer questions that are relevant to their lives and communities, to be critical consumers of the data that surround them every day, and to wield the power of data analysis.


Author(s):  
Senay Purzer ◽  
Jenny Patricia Quintana-Cifuentes

AbstractThis position paper is motivated by recent educational reform efforts that urge the integration of engineering in science education. We argue that it is plausible and beneficial to integrate engineering into formal K-12 science education. We illustrate how current literature, though often implicitly, discusses this integration from a pedagogical, epistemological, or methodological argumentative stance. From a pedagogical perspective, a historically dominant argument emphasizes how engineering helps make abstract science concepts more concrete. The epistemological argument is centered on how engineering is inherently interdisciplinary and hence its integrative role in support of scientific literacy and more broadly STEM literacy is natural. From a methodological perspective, arguments focus on the engineering design process, which is compatible with scientific inquiry and adaptable to answering different types of engineering questions. We call for the necessity of spelling out these arguments and call for common language as science and engineering educators form a research-base on the integration of science and engineering. We specifically provide and discuss specific terminology associated with four different models, each effectively used to integrate engineering into school science. We caution educators against a possible direction towards a convergence approach for a specific type of integrating engineering and science. Diversity in teaching models, more accurately represents the nature of engineering but also allows adaptations based on available school resources. Future synthesis can then examine student learning outcomes associated with different teaching models.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Joslenne Peña ◽  
Benjamin V. Hanrahan ◽  
Mary Beth Rosson ◽  
Carmen Cole

Many initiatives have focused on attracting girls and young women (K-12 or college) to computer science education. However, professional women who never learned to program have been largely ignored, despite the fact that such individuals may have many opportunities to benefit from enhanced skills and attitudes about computer programming. To provide a convenient learning space for this population, we created and evaluated the impacts of a nine-week web development workshop that was carefully designed to be both comfortable and engaging for this population. In this article, we report how the professionals’ attitudes and skills grew over the course of the workshop and how they now expect to integrate these skills and attitudes into their everyday lives.


Author(s):  
Michael Lodi ◽  
Simone Martini

AbstractThe pervasiveness of Computer Science (CS) in today’s digital society and the extensive use of computational methods in other sciences call for its introduction in the school curriculum. Hence, Computer Science Education is becoming more and more relevant. In CS K-12 education, computational thinking (CT) is one of the abused buzzwords: different stakeholders (media, educators, politicians) give it different meanings, some more oriented to CS, others more linked to its interdisciplinary value. The expression was introduced by two leading researchers, Jeannette Wing (in 2006) and Seymour Papert (much early, in 1980), each of them stressing different aspects of a common theme. This paper will use a historical approach to review, discuss, and put in context these first two educational and epistemological approaches to CT. We will relate them to today’s context and evaluate what aspects are still relevant for CS K-12 education. Of the two, particular interest is devoted to “Papert’s CT,” which is the lesser-known and the lesser-studied. We will conclude that “Wing’s CT” and “Papert’s CT,” when correctly understood, are both relevant to today’s computer science education. From Wing, we should retain computer science’s centrality, CT being the (scientific and cultural) substratum of the technical competencies. Under this interpretation, CT is a lens and a set of categories for understanding the algorithmic fabric of today’s world. From Papert, we should retain the constructionist idea that only a social and affective involvement of students into the technical content will make programming an interdisciplinary tool for learning (also) other disciplines. We will also discuss the often quoted (and often unverified) claim that CT automatically “transfers” to other broad 21st century skills. Our analysis will be relevant for educators and scholars to recognize and avoid misconceptions and build on the two core roots of CT.


Sign in / Sign up

Export Citation Format

Share Document