Free Vibration Analysis of Orthotropic Circular Cylindrical Shell Under External Hydrostatic Pressure

2002 ◽  
Vol 46 (03) ◽  
pp. 201-207
Author(s):  
Li Xuebin ◽  
Chen Yaju

An analysis is presented for the free vibration of an orthotropic circular cylindrical shell subjected to hydrostatic pressure. Based on Flügge shell theory, the equations of free vibrations of an orthotropic circular cylindrical shell under hydrostatic pressure are obtained. For shear diaphragms at both ends, the resulting characteristic equations about pressure and frequency are given. These two parameters are calculated exactly. The effect of the shell's parameters (L/R, h/R) and material properties on the free vibration characteristics are studied in detail. Differences between Love-Timoshenko, Donnell equations and that of the Flügge theory are examined as well.

Author(s):  
Saeed Sarkheil ◽  
Mahmud S Foumani ◽  
Hossein M Navazi

Based on the Sanders thin shell theory, this paper presents an exact solution for the vibration of circular cylindrical shell made of two different materials. The shell is sub-divided into two segments and the state-space technique is employed to derive the homogenous differential equations. Then continuity conditions are applied where the material of the cylindrical shell changes. Shells with various combinations of end boundary conditions are analyzed by the proposed method. Finally, solving different examples, the effect of geometric parameters as well as BCs on the vibration of the bi-material shell is studied.


Sign in / Sign up

Export Citation Format

Share Document