Method to Control Unsteady Force of Submarine Propeller Based on the Control of Horseshoe Vortex

2012 ◽  
Vol 56 (01) ◽  
pp. 12-22
Author(s):  
Liu Zhihua ◽  
Xiong Ying ◽  
Tu Chengxu

The submarine propeller works in the submarine wake with severe circumferential nonuniformity, which causes the hydrodynamic force to act on the blade. This results in severe oscillation with the rotation of the propeller and impairs the hydrodynamics and noise performance of the submarine propeller. The horseshoe vortex generated at the hull-appendages junctions of the submarine has important influence on wake uniformity. In the present study, the state of the submarine horseshoe vortex is analyzed and a new method of vortex control baffler is presented. The aim is to weaken the horseshoe vortex. Based on the wind tunnel experiment and numerical simulation on the submarine model, the vortex control baffler can decrease the strength of the submarine horseshoe vortex and improve the uniformity of the submarine wake. Vortex control bafflers adapted for the fully appended SUBOFF model are designed, and the unsteady force of three kinds of propellers functioned after the SUBOFF model is calculated numerically. The results show that although the skew angle and blade number are different, the amplitudes of the unsteady force acting on the blades of all three propellers decreased by 50% to 80% due to the effects of the vortex control baffler.

2011 ◽  
Vol 25 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Zhi-hua Liu ◽  
Ying Xiong ◽  
Zhan-zhi Wang ◽  
Song Wang ◽  
Cheng-xu Tu

Author(s):  
Dun Lin ◽  
Xiutao Bian ◽  
Xin Yuan ◽  
Xinrong Su

In this work, the flow inside a high pressure turbine (HPT) stage is studied with the help of a high-fidelity delayed detached eddy simulation (DDES) code. This work intends to study the flow topology in the HPT stage. There are two motivations for this work: On the one hand, high pressure turbines operates at both transonic Mach numbers and high Reynolds numbers, which imposes a challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of higher-efficient HPT. On the other hand, the wake vortex shedding and tip-leakage flow are important origins of turbine losses and unsteadiness. Built on our previous DDES simulations of HPT vane and stage, this work further investigates the flow in a full 3-dimension HPT stage. The flow topology in the HPT stage is delineated by Q-criterion iso-surfaces. The development of the horseshoe vortex and its interaction with induced vortex and wake vortex is discussed. The wake vortex transportation especially its interaction with the rotor horseshoe vortex is investigated. The flow structures in the tip clearance region are also revealed.


AIAA Journal ◽  
2007 ◽  
Vol 45 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Claude G. Matalanis ◽  
John K. Eaton

Sign in / Sign up

Export Citation Format

Share Document