A Low Complexity Decimator for Communication between a Basestation and a Base Station Control System of an Underwater Acoustic Network

2019 ◽  
Vol 19 (1) ◽  
pp. 580
Author(s):  
Sunhee Kim
2020 ◽  
Vol 20 ◽  
pp. 53-64
Author(s):  
Puneetpal Kaur ◽  
Mohit Marwaha ◽  
Baljinder Singh

A network that can sense the surroundings and collected all the information from the sensor nodes and passed it to the base station is known as a wireless sensor network. The underwater acoustic networks are the type of network deployed under the oceans and passed information to the base station.  Due to the dynamic nature of the network, nodes change their location at any time. To maximum aggregate information from the sensor nodes, to estimate exact node location is very important. The sensor node position estimation is a major issue of the underwater acoustic network.  The process of estimating node position is called node localization. In the existing RSSI based approach for the node, localization has a high delay, which reduces its efficiency. The technique needs to be designed, which localizes more nodes in less amount of time. This research is based on the advancement of the range based scheme for node localization. In the proposed scheme, mobile beacons are responsible for node localization. The beacon nodes send beacon messages in the network, and sensor nodes respond back with a reply message. When two beacons receive the reply of a sensor node that is considered as a localized node, the sensor nodes which are already localized will not respond back to the beacon messages, which reduce delay in the network for node localization.


2021 ◽  
Author(s):  
James Gaston

The work area of a team of small robots is limited by their inability to traverse a very common obstacle: stairs. We present a complete integrated control architecture and communication strategy for a system of reconfigurable robots that can climb stairs. A modular robot design is presented which allows the robots to dynamically reconfigure to traverse certain obstacles. This thesis investigates the implementation of a system of autonomous robots which can cooperatively reconfigure themselves to collectively travers obstacle such as stairs. We present a complete behaviorand communication system which facilitates this autonomous reconfiguration. The layered behavior-based control system is fault-tolerant and extends the capabilities of a control architecture known as ALLIANCE. Behavior classes are introduced as mechanism for managing ordering dependencies and monitoring a robot's progress through a particular task. The communication system compliments the behavioral control and iimplementsinherent robot failure detection without the need for a base station or external monitor. The behavior and communication systems are validated by implementing them ona mobile robot platform synthesized specifically for this research. Experimental trials showed that the implementation of the behavior control systems was successful. The control system provided robust, fault-tolerant performance even when robots failed to perform docking tasks while recongifuring. Once the robots reconfigure to form a chain, a different control scheme based on gait control tables coordinates the individual movements of the robots. Several successful stair climbing trials were accomplished. Improvements to the mechanical design are proposed.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-26 ◽  
Author(s):  
K. Vasudevan ◽  
K. Madhu ◽  
Shivani Singh

Background:Single user Massive Multiple Input Multiple Output (MIMO) can be used to increase the spectral efficiency since the data is transmitted simultaneously from a large number of antennas located at both the base station and mobile. It is feasible to have a large number of antennas in the mobile, in the millimeter wave frequencies. However, the major drawback of single user massive MIMO is the high complexity of data recovery at the receiver.Methods:In this work, we propose a low complexity method of data detection with the help of re-transmissions. A turbo code is used to improve the Bit-Error-Rate (BER).Results and Conclusion:Simulation results indicate a significant improvement in BER with just two re-transmissions as compared to the single transmission case. We also show that the minimum average SNR per bit required for error-free propagation over a massive MIMO channel with re-transmissions is identical to that of the Additive White Gaussian Noise (AWGN) channel, which is equal to -1.6 dB.


Sign in / Sign up

Export Citation Format

Share Document