Instrumental Analysis on Optimization of Laccase Production from Pleurotus ostreatus strain PKN 04 in Different Substrate by Solid State Fermentation (SSF)

2018 ◽  
Vol 11 (2) ◽  
pp. 657
Author(s):  
T.V. Preethi ◽  
A.K. Kathireshan ◽  
G. Narendra kumar
2008 ◽  
Vol 81 (4) ◽  
pp. 675-679 ◽  
Author(s):  
M. Téllez-Téllez ◽  
F. J. Fernández ◽  
A. M. Montiel-González ◽  
C. Sánchez ◽  
G. Díaz-Godínez

2015 ◽  
pp. 932-939
Author(s):  
Nataša Belšak-Šel ◽  
Andrej Gregori ◽  
Maja Leitgeb ◽  
Dušan Klinara ◽  
Štefan Čelan

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3797-3807
Author(s):  
Magdah Ganash ◽  
Tarek M. Abdel Ghany ◽  
Mohamed A. Al Abboud ◽  
Mohamed M. Alawlaqi ◽  
Husam Qanash ◽  
...  

Lignocellulolytic white-rot fungi allow the bioconversion of agricultural wastes into value-added products that are used in a myriad of applications. The aim of this work was to use corn residues (Zea mays L.) to produce valuable products under solid-state fermentation (SSF) with Pleurotus ostreatus. White-rot fungus P. ostreatus was isolated from maize silage (MS) and thereafter it was inoculated on MS as substrate and compared with maize stover (MSt) and maize cobs (MC) to determine the best lignocellulosic substrate for the production of lignocellulolytic enzymes and extracellular protein. The MS gave the highest productivity of CMCase (368.2 U/mL), FPase (170.5 U/mL), laccase (11.4 U/mL), and MnPase (6.6 U/mL). This is compared to productivity on MSt of 222 U/mL, 50.2 U/mL, 4.55 U/mL, and 2.57 U/mL, respectively; and productivity on MC at the same incubation period as 150.5 U/mL, 48.2 U/mL, 3.58 U/mL, and 2.5 U/mL, respectively. The levels of enzyme production declined with increasing incubation period after 15 and 20 days using MS and MC, respectively, as substrates. Maximum liberated extracellular protein content (754 to 878 µg/mL) was recorded using MS, while a low amount (343 to 408 µg/mL) was liberated with using MSt and MC.


2020 ◽  
Vol 42 ◽  
pp. e52699 ◽  
Author(s):  
Alex Graça Contato ◽  
Fabíola Dorneles In´ácio ◽  
Tatiane Brugnari ◽  
Caroline Aparecida Vaz de Araújo ◽  
Giselle Maria Maciel ◽  
...  

Laccases are oxidoreductase enzymes that have the ability to oxidize phenolic substrates. Its biotechnological potential has been greatly explored in many areas as biotechnology industry, bioremediation of dyes, food industry and environmental microbiology. The aim of this study was maximize the laccase production by Pleurotus pulmonarius (Fr.) Quélet in solid-state fermentation (SSF) using orange waste as substrate. After optimization the capability of the crude laccase to decolorize dyes was analyzed. The fermentation medium in the solid-state was optimized by applying a factorial design. After statistics optimization, laccase activity increased two times. The laccase activity appears to be correlated with the ability of crude extract to decolorize some industrial dyes. The optimized laccase was characterized with respect to optimum pH, influence of temperature and salts. Our results demonstrate that P. pulmonarius was an efficient producer of an important industrial enzyme, laccase, in a cheap solid-state system using orange waste as substrate.


Sign in / Sign up

Export Citation Format

Share Document