scholarly journals The extent of genetic diversity among popular rice cultivars of Andhra pradesh and Telangana using microsatellite markers

2016 ◽  
Vol 7 (4) ◽  
pp. 1089
Author(s):  
CH.V. Durga Rani ◽  
S Vanisri ◽  
Jamaloddin Mohammed ◽  
Swathi Gattu ◽  
Ramprasad Eruvuri ◽  
...  
2019 ◽  
Author(s):  
Vanlalsanga No Surname ◽  
Sagolshem Priyokumar Singh ◽  
Yengkhom Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali Dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


2019 ◽  
Author(s):  
Vanlalsanga No Surname ◽  
Sagolshem Priyokumar Singh ◽  
Yengkhom Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali Dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


2019 ◽  
Author(s):  
Vanlalsanga No Surname ◽  
Sagolshem Priyokumar Singh ◽  
Yengkhom Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali Dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Vanlalsanga ◽  
S. Priyokumar Singh ◽  
Y. Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


2007 ◽  
Vol 24 (0) ◽  
Author(s):  
R.C. Sharma ◽  
N.K. Chaudhary ◽  
B.R. Ojha ◽  
B.K. Joshi ◽  
M.P. Pandey ◽  
...  

2009 ◽  
Vol 17 (1) ◽  
pp. 82 ◽  
Author(s):  
Liang Hongwei ◽  
Li Zhong ◽  
Luo Xiangzhong ◽  
Wang Changzhong ◽  
Hu Guangfu ◽  
...  

Heredity ◽  
2001 ◽  
Vol 86 (4) ◽  
pp. 469-479 ◽  
Author(s):  
Stéphanie Mariette ◽  
David Chagné ◽  
Céline Lézier ◽  
Patrick Pastuszka ◽  
Annie Raffin ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Leonard Bonilha Piveta ◽  
Nilda Roma-Burgos ◽  
José Alberto Noldin ◽  
Vívian Ebeling Viana ◽  
Claudia de Oliveira ◽  
...  

Rice is the staple food for about half of the world population. Rice grain yield and quality are affected by climatic changes. Arguably, rice cultivars’ genetic diversity is diminished from decades of breeding using narrow germplasm, requiring introgressions from other Oryza species, weedy or wild. Weedy rice has high genetic diversity, which is an essential resource for rice crop improvement. Here, we analyzed the phenotypic, physiological, and molecular profiles of two rice cultivars (IRGA 424 and SCS119 Rubi) and five weedy rice (WR), from five different Brazilian regions, in response to heat and drought stress. Drought and heat stress affected the phenotype and photosynthetic parameters in different ways in rice and WR genotypes. A WR from Northern Brazil yielded better under heat stress than the non-stressed check. Drought stress upregulated HSF7A while heat stress upregulated HSF2a. HSP74.8, HSP80.2, and HSP24.1 were upregulated in both conditions. Based on all evaluated traits, we hypothesized that in drought conditions increasing HSFA7 expression is related to tiller number and that increase WUE (water use efficiency) and HSFA2a expression are associated with yield. In heat conditions, Gs (stomatal conductance) and E’s increases may be related to plant height; tiller number is inversely associated with HSPs expression, and chlorophyll content and Ci (intercellular CO2 concentration) may be related to yield. Based on morphology, physiology, and gene regulation in heat and drought stress, we can discriminate genotypes that perform well under these stress conditions and utilize such genotypes as a source of genetic diversity for rice breeding.


Sign in / Sign up

Export Citation Format

Share Document