scholarly journals Molecular and Physiological Responses of Rice and Weedy Rice to Heat and Drought Stress

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Leonard Bonilha Piveta ◽  
Nilda Roma-Burgos ◽  
José Alberto Noldin ◽  
Vívian Ebeling Viana ◽  
Claudia de Oliveira ◽  
...  

Rice is the staple food for about half of the world population. Rice grain yield and quality are affected by climatic changes. Arguably, rice cultivars’ genetic diversity is diminished from decades of breeding using narrow germplasm, requiring introgressions from other Oryza species, weedy or wild. Weedy rice has high genetic diversity, which is an essential resource for rice crop improvement. Here, we analyzed the phenotypic, physiological, and molecular profiles of two rice cultivars (IRGA 424 and SCS119 Rubi) and five weedy rice (WR), from five different Brazilian regions, in response to heat and drought stress. Drought and heat stress affected the phenotype and photosynthetic parameters in different ways in rice and WR genotypes. A WR from Northern Brazil yielded better under heat stress than the non-stressed check. Drought stress upregulated HSF7A while heat stress upregulated HSF2a. HSP74.8, HSP80.2, and HSP24.1 were upregulated in both conditions. Based on all evaluated traits, we hypothesized that in drought conditions increasing HSFA7 expression is related to tiller number and that increase WUE (water use efficiency) and HSFA2a expression are associated with yield. In heat conditions, Gs (stomatal conductance) and E’s increases may be related to plant height; tiller number is inversely associated with HSPs expression, and chlorophyll content and Ci (intercellular CO2 concentration) may be related to yield. Based on morphology, physiology, and gene regulation in heat and drought stress, we can discriminate genotypes that perform well under these stress conditions and utilize such genotypes as a source of genetic diversity for rice breeding.

2020 ◽  
Vol 13 (1) ◽  
pp. 317
Author(s):  
Sharif Ahmed ◽  
M. Jahangir Alam ◽  
Akbar Hossain ◽  
A. K. M. Mominul Islam ◽  
Tahir H. Awan ◽  
...  

Dry direct-seeded rice (Oryza sativa L.), a climate-smart and resource-efficient (labor and water) rice production technology is gaining popularity in many parts of Asian countries; however, weeds are the major constraints for its early establishment and optimum productivity. Chemical weed management is effective, rapid, and also decreases weed management costs in dry direct-seeded rice (DSR) system; however, chemical use for weed management have a negative effect on the environment and also have human health hazards. Therefore, integrated weed management (IWM) is the best option for the sustainability of rice production under the DSR system. Improving competitiveness against weeds, weed-competitive rice cultivars, and high seeding rates were found to be the most promising IWM strategies in DSR. In this context, a field study was conducted to evaluate the weed competitiveness of rice cultivars and seeding rates on the performance of aus rice in dry direct-seeded systems in Bangladesh. Three inbred rice cultivars (CV), namely “BRRI dhan26”, “BRRI dhan48”, and “BRRI dhan55”, and one hybrid cultivar, “Arize” were tested in a seeding rate (SR) of 20, 40, and 80 kg ha−1 under two weeding regimes (WR) of weed-free and partially-weedy. Rice grain yield was strongly affected (p < 0.01) by the interactions of WR, CV, and SR. In weed-free conditions, the yield of all three inbred cultivars was increased up to SR of 40 kg ha−1 and for the hybrid cultivar, up to SR of 20 kg ha−1, and with further increment of SR, there was no yield advantage. Conversely, under partially weedy conditions, the yield of three inbred cultivars increased up to SR of 80 kg ha−1; however, for the hybrid cultivar, this increment was up to SR of 40 kg ha−1 and thereafter, no yield gain. In weedy conditions, the higher SR compensates for the yield losses by increasing the competitiveness of rice with weeds. Across SR, the hybrid cultivar had a significantly (p < 0.01) higher weed competitive index (WCI) than all the inbred cultivars and the highest SR always had a higher WCI.


2007 ◽  
Vol 24 (0) ◽  
Author(s):  
R.C. Sharma ◽  
N.K. Chaudhary ◽  
B.R. Ojha ◽  
B.K. Joshi ◽  
M.P. Pandey ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Made Pharmawati ◽  
Ni Nyoman Wirasiti ◽  
Luh Putu Wrasiati

Abstrak Cekaman kekeringan merupakan faktor pembatas penting bagi pertumbuhan dan produktivitas tanaman termasuk padi.      Penelitian ini bertujuan menganalisis respon padi IR64 terhadap cekaman kekeringan dengan pemberian polietilen glikol (PEG) pada fase reproduktif.  Penelitian juga bertujuan menganalisis ekspresi gen aquaporin akibat cekaman kekeringan.  Bibit padi ditanam dalam pot dan perlakuan PEG dengan konsentrasi 108g/L (-0.25MPa) dan 178g/L (-0.52 MPa) diberikan saat munculnya panikula. Perlakuan diberikan selama 2 minggu, kemudian tanaman disiram kembali.  Ekspresi gen diamati pada akhir perlakuan dengan semi kuantitatif real time PCR.  Ekstraksi RNA menggunakan RNeasy plant mini kit, sedangkan sintesis cDNA menggunakan Transcriptor First Strand cDNA Kit.  Hasil penelitian menunjukkan bahwa jumlah malai dan berat total malai berkurang akibat cekaman kekeringan.  Persentase gabah kosong mencapai 84,6% pada perlakuan PEG-0,52 MPa, sedangkan pada perlakuan PEG -0,25 MPa persentase gabah kosong sebesar 67,8%.  Pada kontrol persentase gabah kosong adalah 10,3%.  Ekspresi gen OsPIP2;7 sedikit menurun pada perlakuan PEG -0,52 MPa.Kata kunci: ekspresi gen, IR64, kekeringan, padi, PEG  Abstract Drought stress is one of the limiting factors of plant growth and productivity including rice.  The aim of this study was to analyze responses of IR64 rice to polyethylene glycol (PEG)-induced-drought stress at the reproductive stage.  This study also aimed to analyze the expression of aquaporin under drought stress.  Rice seedlings were grown in pot system and PEG treatment at concentration of -0.25MPa (108g/L) and -0.52 MPa (178g/L) were given when the panicles arose.  Treatments were conducted for 2 weeks, after that the plants were rewatered.  Gene expression was evaluated at the end of PEG treatment using semi quantitative real time PCR. RNA was extracted using RNeasy plant mini kit, while cDNA synthesis was done using Transcriptor First Strand cDNA Kit.  The results showed that the number and weight of rice ear were less in plant treated with PEG than in control.  The percentage of empty rice grain reached 84.6% at PEG -0.52 MPa, while at PEG -0.25 MPa the percentage of empty grain was 67.8%.  In control plant, the percentage of empty grain was 10.3%.  Drought stress did not alter the expression of OsPIP2;7.  Keywords: drought, gene expression, IR64, PEG, rice


2011 ◽  
Vol 37 (8) ◽  
pp. 1324-1332 ◽  
Author(s):  
Jing SHAO ◽  
Wei-Min DAI ◽  
Lian-Ju ZHANG ◽  
Xiao-Ling SONG ◽  
Sheng QIANG

Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Marino Costa-Santos ◽  
Nuno Mariz-Ponte ◽  
Maria Celeste Dias ◽  
Luísa Moura ◽  
Guilhermina Marques ◽  
...  

Plant-growth-promoting bacteria (PGPB) are gaining attention as a sustainable alternative to current agrochemicals. This study evaluated the impact of three Bacillus spp. (5PB1, 1PB1, FV46) and one Brevibacillus sp. (C9F) on the important crop tomato (Solanum lycopersicum) using the model cv. ‘MicroTom’. The effects of these isolates were assessed on (a) seedlings’ growth and vigor, and (b) adult potted plants. In potted plants, several photosynthetic parameters (chlorophylls (a and b), carotenoids and anthocyanins contents, transpiration rate, stomatal conductance, net CO2 photosynthetic rate, and intercellular CO2 concentration, and on chlorophyll fluorescence yields of light- and dark-adapted leaves)), as well as soluble sugars and starch contents, were quantified. Additionally, the effects on redox status were evaluated. While the growth of seedlings was, overall, not influenced by the strains, some effects were observed on adult plants. The Bacillus safensis FV46 stimulated the content of pigments, compared to C9F. Bacillus zhangzhouensis 5PB1 increased starch levels and was positively correlated with some parameters of the photophosphorylation and the gas exchange phases. Interestingly, Bacillus megaterium 1PB1 decreased superoxide (O2−) content, and B. safensis FV46 promoted non-enzymatic antioxidant defenses, increasing total phenol content levels. These results, conducted on a model cultivar, support the theory that these isolates differently act on tomato plant physiology, and that their activity depends on the age of the plant, and may differently influence photosynthesis. It would now be interesting to analyze the influence of these bacteria using commercial cultivars.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


Author(s):  
Junyao Lyu ◽  
Feng Xiong ◽  
Ningxiao Sun ◽  
Yiheng Li ◽  
Chunjiang Liu ◽  
...  

Volatile organic compound (VOCs) emission is an important cause of photochemical smog and particulate pollution in urban areas, and urban vegetation has been presented as an important source. Different tree species have different emission levels, so adjusting greening species collocation is an effective way to control biogenic VOC pollution. However, there is a lack of measurements of tree species emission in subtropical metropolises, and the factors influencing the species-specific differences need to be further clarified. This study applied an in situ method to investigate the isoprene emission rates of 10 typical tree species in subtropical metropolises. Photosynthesis and related parameters including photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate, which can influence the emission rate of a single species, were also measured. Results showed Salix babylonica always exhibited a high emission level, whereas Elaeocarpus decipiens and Ligustrum lucidum maintained a low level throughout the year. Differences in photosynthetic rate and stomatal CO2 conductance are the key parameters related to isoprene emission among different plants. Through the establishment of emission inventory and determination of key photosynthetic parameters, the results provide a reference for the selection of urban greening species, as well as seasonal pollution control, and help to alleviate VOC pollution caused by urban forests.


2021 ◽  
Author(s):  
Ricardo GIL ◽  
Dhikra ZAYOUD ◽  
Zeineb OUERGHI ◽  
Monica BOSCAIU ◽  
Oscar VICENTE ◽  
...  

Abstract Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought. In the present study, we have compared the physiological responses to drought of two Retama raetam (retama) subspecies from Tunisia, one of them living under the desert climate (subsp. raetam) and the other one growing on the coast (subsp. bovei). Methods To physiologically characterize the two R. raetam subspecies, and to elucidate their main mechanisms underlying their tolerance to drought stress, parameters related to seed germination, growth, photosynthesis (net photosynthetic rate, intracellular CO2 concentration, transpiration rate, stomatal conductance and water use efficiency), and accumulation of osmolytes (proline, glycine betaine and soluble sugars) were determined in four-month-old plants subjected to stress for up to one month. Important findings Drought significantly inhibited germination, growth, and all the evaluated photosynthetic parameters. Plants of R. raetam subsp. bovei were severely affected by drought after three weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls. At the same time, proline and glycine betaine significantly accumulated compared to the irrigated controls, but much less than in R. raetam subsp. raetam; in the latter subspecies, proline and glycine betaine increased to levels 24-fold and 6-fold higher, respectively, than in the corresponding controls. In summary, the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate, suggesting that tolerance in R. raetam is dependent on accumulation of osmolytes.


Sign in / Sign up

Export Citation Format

Share Document