Analyzing the Effect of Process Parameters on the Weld Bead Geometry in Robotic GMAW using Taguchi Techniques

2016 ◽  
Vol 6 (6special) ◽  
pp. 32
Author(s):  
P. Thamilarasi ◽  
E. Mohan Kumar ◽  
S. Ragunathan ◽  
P. Saravana Kumar
2017 ◽  
Vol 867 ◽  
pp. 88-96
Author(s):  
S.M. Ravikumar ◽  
P. Vijian

Welding input process parameters are playing a very significant role in determining the weld bead quality. The quality of the joint can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Experiments were conducted to develop models, using a three factor, five level factorial design for 304 stainless steel as base plate with ER 308L filler wire of 1.6 mm diameter. The purpose of this study is to develop the mathematical model and compare the observed output values with predicted output values. Welding current, welding speed and nozzle to plate distance were chosen as input parameters, while depth of penetration, weld bead width, reinforcement and dilution as output parameters. The models developed have been checked for their adequacy. Confirmation experiments were also conducted and the results show that the models developed can predict the bead geometries and dilution with reasonable accuracy. The direct and interaction effect of the process parameters on bead geometry are presented in graphical form.


Author(s):  
R. Sudhakaran ◽  
P. S. Siva Sakthivel

The quality of the weld joint is highly influenced by the welding parameters. Hence accurate prediction of weld bead parameters is highly essential to achieve good quality joint. This paper presents development of neural network models for predicting bead parameters such as depth of penetration, bead width and depth to width ratio for AISI 202 grade stainless steel GTAW plates. The use of this series in certain applications ended in failure of the product as there is no adequate level of user knowledge. Hence it becomes imperative to go for detailed investigations on this grade before recommending it for any application. The process parameters chosen for the study are welding current, welding speed, gas flow rate and welding gun angle. The chosen output parameters were depth of penetration, bead width and depth to width ratio. The experiments were conducted based on design of experiments using fractional factorial with 125 runs. Using the experimental data feed forward back propagation neural net work models were developed and trained using Levenberg Marquardt algorithm. The training, learning, performance and transfer functions used are trainlm, learningdm, MSE and tansig respectively. Four networks were developed with four neurons for the input layer, 3 neurons for the output layer and different nodes for the hidden layer. They are 4 – 2 – 3, 4 – 4 – 3, 4 – 8 – 3 and 4 – 9 – 3. It was found that ANN model based on network 4 – 9 – 3 predicted the bead dimensions more accurately than the other networks. The prediction of weld bead geometry parameters helps in identifying the recommended combination of process parameters to achieve good quality joint.


2014 ◽  
Vol 11 (6) ◽  
pp. 575-588
Author(s):  
P. Sreeraj ◽  
T. Kannan ◽  
Maji Subhasis

This paper presents calculation of the welding process parameters for obtaining optimal weld bead geometry in Flux Cored arc welding (FCAW) process. Bead on plate welding was carried as per L16 orthogonal array. In this paper weld bead geometry such as penetration, bead width, reinforcement and percentage of dilution of IS 2062 structural steel plates investigated. Two hybrid techniques firstly Taguchi method coupled with Grey relational analysis and secondly Taguchi method in combination with desirability function (DF) approach has been applied in this paper. Comparison made between two hybrid optimization techniques are made to analyze to choose the best method. Optimal results have been confirmed by confirmatory experiment which showed satisfactory results.


Author(s):  
Nader Mollayi ◽  
Mohammad Javad Eidi

<p><span>Modelling and prediction of weld bead geometry is an important issue in robotic GMAW process. This process is highly non-linear and coupled multivariable system and the relationship between process parameters and weld bead geometry cannot be defined by an explicit mathematical expression. Therefore, application of supervised learning algorithms can be useful for this purpose. Support vector machine is a very successful approach to supervised learning. In this approach, a higher degree of accuracy and generalization capability can be obtained by using the multiple kernel learning framework, which is considered as a great advantage in prediction of weld bead geometry due to the high degree of prediction accuracy required. In this paper, a novel approach for modelling and prediction of the weld bead geometry, based on multiple kernel support vector regression analysis has been proposed, which benefits from a high degree of accuracy and generalization capability. This model can be used for proper selection of welding parameters in order to obtain a desired weld bead geometry in robotic GMAW process.</span></p>


2015 ◽  
Author(s):  
José Luis Lázaro Plata ◽  
Edison Andres Arteaga Lopez ◽  
Herlys Hernando Cañizares Torres ◽  
Guilherme Caribé de Carvalho

2014 ◽  
Vol 47 (3) ◽  
pp. 1
Author(s):  
Subrata Saha ◽  
Naseem Ahmed ◽  
Md. Abdur Rafiq ◽  
Tarapada Bhowmick

Sign in / Sign up

Export Citation Format

Share Document