Optimizing Task, Memory and Energy of Wireless Sensor Grids using Grid Cluster based Multilevel Priority Scheduling

Author(s):  
S. J. Subhashini ◽  
P. Alli
2019 ◽  
Vol 8 (2) ◽  
pp. 1243-1248

In the real-time scenario involving wireless sensor networks, the data forwarding and data gathering procedures are taking place from the remote environment. With the involvement of heterogeneous architecture and multi-hop data transmission paths, there lies a serious threat for secured data communication. There may be chances of data attacks either from the inside intruder or from the external intruder. The problem of data flow attack by adding malicious information, viz. Data injection attack and outside arbitrary attack, viz. Byzantine attacks are found to be more dangerous and cause vulnerability for the wireless sensor network. So improving the reliability and security in multi-relay networks is very much essential. In this work, the practical approach of detecting data injection and Byzantine attacks using the proposed method of random network coding is performed. Then, as improvisation measure, the priority scheduling algorithm is implemented to effectively schedule the data transfer. Real-time packets with highest priority in the distribution queue are placed first in the processing mechanism. The remaining packets are arranged based on the position of the sensor nodes and are placed in separate queues. Least priority packets can obstruct the dispensation of their direct higher precedence packets after waitlisted for a certain number of time frames. Simulation results using the NS2 environment show that using the priority scheduling algorithm has good performance values in terms of the packet delivery ratio, throughput and delay. Also, the attack detection metrics such as false positive ratio and detection ratio are also improved when using the priority scheduling algorithm. Thus an improvised priority algorithm for an uplink scheduler in WSN is implemented to increase the performance and detection metrics.


Sign in / Sign up

Export Citation Format

Share Document