scholarly journals Improvising Reliability and Security in Multiple Relay Network using Optimal Scheduling

2019 ◽  
Vol 8 (2) ◽  
pp. 1243-1248

In the real-time scenario involving wireless sensor networks, the data forwarding and data gathering procedures are taking place from the remote environment. With the involvement of heterogeneous architecture and multi-hop data transmission paths, there lies a serious threat for secured data communication. There may be chances of data attacks either from the inside intruder or from the external intruder. The problem of data flow attack by adding malicious information, viz. Data injection attack and outside arbitrary attack, viz. Byzantine attacks are found to be more dangerous and cause vulnerability for the wireless sensor network. So improving the reliability and security in multi-relay networks is very much essential. In this work, the practical approach of detecting data injection and Byzantine attacks using the proposed method of random network coding is performed. Then, as improvisation measure, the priority scheduling algorithm is implemented to effectively schedule the data transfer. Real-time packets with highest priority in the distribution queue are placed first in the processing mechanism. The remaining packets are arranged based on the position of the sensor nodes and are placed in separate queues. Least priority packets can obstruct the dispensation of their direct higher precedence packets after waitlisted for a certain number of time frames. Simulation results using the NS2 environment show that using the priority scheduling algorithm has good performance values in terms of the packet delivery ratio, throughput and delay. Also, the attack detection metrics such as false positive ratio and detection ratio are also improved when using the priority scheduling algorithm. Thus an improvised priority algorithm for an uplink scheduler in WSN is implemented to increase the performance and detection metrics.

2021 ◽  
Author(s):  
Jenice Prabu A ◽  
Hevin Rajesh D

Abstract In Wireless sensor network, the major issues are security and energy consumption. There may be several numbers of malicious nodes present in sensor networks. Several techniques have been proposed by the researchers to identify these malicious nodes. WSNs contain many sensor nodes that sense their environment and also transmit their data via multi-hop communication schemes to the base station. These sensor nodes provides power supply using battery and the energy consumption of these batteries must be low. Securing the data is to avoid attacks on these nodes and data communication. The aggregation of data helps to minimize the amount of messages transmitted within the network and thus reduces overall network energy consumption. Moreover, the base station may distinguish the encrypted and aggregated data based on the encryption keys during the decryption of the aggregated data. In this paper, two aspects of the problem is concerned, we investigate the efficiency of data aggregation: first, how to develop cluster-based routing algorithms to achieve the lowest energy consumption for aggregating data, and second, security issues in wsn. By using Network simulator2 (NS2) this scheme is simulated. In the proposed scheme, energy consumption, packet delivery ratio and throughput is analyzed. The proposed clustering, routing, and protection protocol based on the MCSDA algorithm shows significant improvement over the state-of - the-art protocol.


2018 ◽  
Vol 7 (3) ◽  
pp. 1956
Author(s):  
A Felix Arokya Jose ◽  
C Anand Deva Durai ◽  
S John Livingston

Wireless Sensor Network (WSN) has an enormous scope of utilizations in detecting different parameters such as temperature, pressure, sound, pollution, etc. The sensed data in each sensor node are a valuable one. To communicate the information to the base station for further processing, a lot of strategies are available. Each sensor senses the data in different sampling rate depending upon the sudden raise in the sensing parameters. Data communication to the base station is very critical due to the dynamicity of the environment during the stipulated time.The sensed data should reach the base station before the data becomes invalid due to the violation of the deadline. In order to avoid deadline violation so that the sensed data becomes useless, this paper proposing a novel data collection algorithm based on the popular Earliest Deadline First (EDF) scheduling algorithm. The various simulation parameters are taken into account to verify the performance of the proposed method and the result shows that it achieves high throughput, low delay, high Packet Delivery Ratio (PDR) and low energy consumption.  


Author(s):  
Leena Das ◽  
Sourav Mohapatra ◽  
Durga Prasad Mohapatra

<p>Real-Time Monotonic algorithm (RMA) is a widely used static priority scheduling algorithm. For application of RMA at various systems, it is essential to determine the system’s feasibility first. The various existing algorithms perform the analysis by reducing the scheduling points in a given task set. In this paper we propose a schedubility test algorithm, which reduces the number of tasks to be analyzed instead of reducing the scheduling points of a given task. This significantly reduces the number of iterations taken to compute feasibility. This algorithm can be used along with the existing algorithms to effectively reduce the high complexities encountered in processing large task sets. We also extend our algorithm to multiprocessor environment and compare number of iterations with different number of processors. This paper then compares the proposed algorithm with existing algorithm. The expected results show that the proposed algorithm performs better than the existing algorithms.</p>


Author(s):  
Mamata Rath ◽  
Binod Kumar Pattanayak

Protected data transmission in cluster based Mobile Adhoc Networks (MANETs) is a challenging mission due to the high level of node mobility of nodes and resource constrained autonomous stations during packet routing. To target this mission, a Mobile Agent based QoS (MAQ) platform has been planned in this paper that uses an improved clustering algorithm during data communication. A Mobile agent architecture has been anticipated in a way that it is coupled with the cluster head of every cluster in MANET and when priority based real time application gets notified in these clusters then the proposed system gets activated to support prioritized service to these applications including checking and monitoring the flow characteristics for real time applications. JADE (Java Agent Development Environment) based prioritized scheme at the mobile agent has been implemented in the proposed system. As this is a function oriented approach, so the overall network performance significantly improves resulting better throughput and packet delivery ratio.


2019 ◽  
Vol 1235 ◽  
pp. 012044
Author(s):  
Poltak Sihombing ◽  
Mangasa Manullang ◽  
Dahlan Sitompul ◽  
Imelda Sri Dumayanti

2021 ◽  
Vol 336 ◽  
pp. 05031
Author(s):  
Xiaochun Wang

Huawei LiteOS is a real-time operating system. Thread schedulability is an important thing to be considered first when we use the RTOS in an application. There are a lot of methods to value thread schedulability in practical application. Rate monotonic scheduling algorithm is a widely used static priority scheduling algorithm. We discussed the thread schedulability in Huawei LiteOS.


Sign in / Sign up

Export Citation Format

Share Document