scholarly journals On the Power of Labels in Transition Systems

2001 ◽  
Vol 8 (19) ◽  
Author(s):  
Jirí Srba

In this paper we discuss the role of labels in transition systems with regard to bisimilarity and model checking problems. We suggest a general reduction from labelled transition systems to unlabelled ones, preserving bisimilarity and satisfiability of mu-calculus formulas. We apply the reduction to the class of transition systems generated by Petri nets and pushdown automata, and obtain several decidability/complexity corollaries for unlabelled systems. Probably the most interesting result is undecidability of strong bisimilarity for unlabelled Petri nets.

1997 ◽  
Vol 26 (519) ◽  
Author(s):  
Allan Cheng ◽  
Søren Christensen ◽  
Kjeld Høyer Mortensen

In this paper we present a CTL-like logic which is interpreted over the state spaces of Coloured Petri Nets. The logic has been designed to express properties of both state and transition information. This is possible because the state spaces are labelled transition systems. We compare the expressiveness of our logic with CTL's. Then, we present a model checking algorithm which for efficiency reasons utilises strongly connected components and formula reduction rules. We present empirical results for non-trivial examples and compare the performance of our algorithm with that of Clarke, Emerson, and Sistla.


1992 ◽  
Vol 21 (399) ◽  
Author(s):  
Madhavan Mukund

<p>Labelled transition systems can be extended to faithfully model concurrency by permitting transitions between states to be labelled by a collection of actions, denoting a concurrent step, We can characterize a subclass of these <em>step transition systems</em>, called PN-transition systems, which describe the behaviour of Petri nets.</p><p>This correspondence is formally described in terms of a coreflection between a category of <em>PN</em>-transition systems and a category of Petri nets.</p><p>In this paper, we show that we can define subcategories of <em>PN</em>-transition systems whose objects are <em> safe PN-transition systems and elementary PN-transition systems</em> such that there is a coreflection between these subcategories and subcategories of our category of Petri nets corresponding to safe nets and elementary net systems.</p><p>We also prove that our category of elementary <em>PN</em>-transition systems is equivalent to the category of (sequential) <em> elementary transition systems</em> defined by Nielsen, Rozenberg and Thiagarajan, thereby establishing that the concurrent behaviour of an elementary net system can be completely recovered from a description of its sequential behaviour. Finally, we establish a coreflection between our category of safe <em>PN</em>-transition system and a subcategory of <em>asynchronous transition systems</em> which has been shown by Winskel and Nielsen to be closely linked to safe nets.</p>


1992 ◽  
Vol 03 (04) ◽  
pp. 443-478 ◽  
Author(s):  
MADHAVAN MUKUND

Labelled transition systems are a simple yet powerful formalism for describing the operational behaviour of computing systems. They can be extended to model concurrency faithfully by permitting transitions between states to be labelled by a collection of actions, denoting a concurrent step. Petri nets (or Place/Transition nets) give rise to such step transition systems in a natural way—the marking diagram of a Petri net is the canonical transition system associated with it. In this paper, we characterize the class of PN-transition systems, which are precisely those step transition systems generated by Petri nets. We express the correspondence between PN-transition systems and Petri nets in terms of an adjunction between a category of PN-transition systems and a category of Petri nets in which the associated morphisms are behaviour-preserving in a strong and natural sense.


2022 ◽  
Vol 183 (1-2) ◽  
pp. 1-31
Author(s):  
Raymond Devillers

In order to speed up the synthesis of Petri nets from labelled transition systems, a divide and conquer strategy consists in defining decompositions of labelled transition systems, such that each component is synthesisable iff so is the original system. Then corresponding Petri Net composition operators are searched to combine the solutions of the various components into a solution of the original system. The paper presents two such techniques, which may be combined: products and articulations. They may also be used to structure transition systems, and to analyse the performance of synthesis techniques when applied to such structures.


2021 ◽  
Vol 178 (1-2) ◽  
pp. 1-30
Author(s):  
Florian Bruse ◽  
Martin Lange ◽  
Etienne Lozes

Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expressive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incorporation of a typed λ-calculus into the modal μ-calculus. Its model checking problem on finite transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for formulas that use functions of type order at most k < 0. In this paper we present a fragment with a presumably easier model checking problem. We show that so-called tail-recursive formulas of type order k can be model checked in (k − 1)-EXPSPACE, and also give matching lower bounds. This yields generic results for the complexity of bisimulation-invariant non-regular properties, as these can typically be defined in HFL.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-37
Author(s):  
Christopher H. Broadbent ◽  
Arnaud Carayol ◽  
C.-H. Luke Ong ◽  
Olivier Serre

This article studies the logical properties of a very general class of infinite ranked trees, namely, those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal -calculus, three main problems: model-checking, logical reflection (a.k.a. global model-checking, that asks for a finite description of the set of elements for which a formula holds), and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems, we provide an effective solution. This is obtained, thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.


Sign in / Sign up

Export Citation Format

Share Document