From CML to process Algebras
<p>Reppy's language CML extends Standard ML of Milner et al. with primitives for communication. It thus inherits a notion of strong polymorphic typing and may be equipped with a structural operational semantics. We formulate an effect system for statically expressing the communication behaviours of CML programs as these are not otherwise reflected in the types.</p><p>We then show how types and behaviours evolve in the course of computation: types may decrease and behaviours may loose alternatives as well as decrease. It will turn out that the syntax of behaviours is rather similar to that of a process algebra; our main results may therefore be viewed as regarding the semantics of a process algebra as an <em>abstraction</em> of the semantics of an underlying programming language. This establishes a new kind of connection between ''realistic'' concurrent programming languages and ''theoretical'' process algebras.</p>