graph data
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 195)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 40 (4) ◽  
pp. 1-46
Author(s):  
Hao Peng ◽  
Ruitong Zhang ◽  
Yingtong Dou ◽  
Renyu Yang ◽  
Jingyi Zhang ◽  
...  

Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data, typically through message passing among nodes by aggregating their neighborhood information via different operations. While promising, most existing GNNs oversimplify the complexity and diversity of the edges in the graph and thus are inefficient to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this article, we propose RioGNN , a novel Reinforced, recursive, and flexible neighborhood selection guided multi-relational Graph Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of nodes, edges, attributes, and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly, to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework with estimable depth and width for different scales of multi-relational graphs. RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation via the filtering threshold mechanism. Comprehensive experiments on real-world graph data and practical tasks demonstrate the advancements of effectiveness, efficiency, and the model explainability, as opposed to other comparative GNN models.


2022 ◽  
Vol 27 (2) ◽  
pp. 235-243
Author(s):  
Xu Zheng ◽  
Lizong Zhang ◽  
Kaiyang Li ◽  
Xi Zeng

2022 ◽  
Author(s):  
Takahiro Inoue ◽  
Kenichi Tanaka ◽  
Kimito Funatsu
Keyword(s):  

Supply chain network in the automotive industry has complex, interconnected, multiple-depth relationships. Recently, the volume of supply chain data increases significantly with Industry 4.0. The complex relationships and massive volume of supply chain data can cause visibility and scalability issues in big data analysis and result in less responsive and fragile inventory management. The authors develop a graph data modeling framework to address the computational problem of big supply chain data analysis. In addition, this paper introduces Time-to-Stockout analysis for supply chain resilience and shows how to compute it through a labeled property graph model. The computational result shows that the proposed graph data model is efficient for recursive and variable-length data in supply chain, and relationship-centric graph query language has capable of handling a wide range of business questions with impressive query time.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-24
Author(s):  
Yu Zhang ◽  
Da Peng ◽  
Xiaofei Liao ◽  
Hai Jin ◽  
Haikun Liu ◽  
...  

Many out-of-GPU-memory systems are recently designed to support iterative processing of large-scale graphs. However, these systems still suffer from long time to converge because of inefficient propagation of active vertices’ new states along graph paths. To efficiently support out-of-GPU-memory graph processing, this work designs a system LargeGraph . Different from existing out-of-GPU-memory systems, LargeGraph proposes a dependency-aware data-driven execution approach , which can significantly accelerate active vertices’ state propagations along graph paths with low data access cost and also high parallelism. Specifically, according to the dependencies between the vertices, it only loads and processes the graph data associated with dependency chains originated from active vertices for smaller access cost. Because most active vertices frequently use a small evolving set of paths for their new states’ propagation because of power-law property, this small set of paths are dynamically identified and maintained and efficiently handled on the GPU to accelerate most propagations for faster convergence, whereas the remaining graph data are handled over the CPU. For out-of-GPU-memory graph processing, LargeGraph outperforms four cutting-edge systems: Totem (5.19–11.62×), Graphie (3.02–9.41×), Garaph (2.75–8.36×), and Subway (2.45–4.15×).


Author(s):  
Pietro Daverio ◽  
Hassan Nazeer Chaudhry ◽  
Alessandro Margara ◽  
Matteo Rossi

Sign in / Sign up

Export Citation Format

Share Document