scholarly journals Results on the normality of square-free monomial ideals and cover ideals under some graph operations

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Ibrahim Al-Ayyoub ◽  
Mehrdad Nasernejad ◽  
Kazem Khashyarmanesh ◽  
Leslie G. Roberts ◽  
Veronica Crispin Quiñonez

In this paper, we introduce techniques for producing normal square-free monomial ideals from old such ideals. These techniques are then used to investigate the normality of cover ideals under some graph operations. Square-free monomial ideals that come out as linear combinations of two normal ideals are shown to be not necessarily normal; under such a case we investigate the integral closedness of all powers of these ideals.


2019 ◽  
Vol 10 (2) ◽  
pp. 301-309
Author(s):  
A. Bharali ◽  
Amitav Doley


10.37236/1734 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
David Arthur

An arc-representation of a graph is a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a single point. The arc-width of a graph is defined to be the minimum width over all of its arc-representations. We extend the work of Barát and Hajnal on this subject and develop a generalization we call restricted arc-width. Our main results revolve around using this to bound arc-width from below and to examine the effect of several graph operations on arc-width. In particular, we completely describe the effect of disjoint unions and wedge sums while providing tight bounds on the effect of cones.



Author(s):  
Andrew Gelman ◽  
Deborah Nolan

Descriptive statistics is the typical starting point for a statistics course, and it can be tricky to teach because the material is more difficult than it first appears. The activities in this chapter focus more on the topics of data displays and transformations, rather than the mean, median, and standard deviation, which are covered easily in a textbook and on homework assignments. Specific topics include: distributions and handedness scores; extrapolation of time series and world record times for the mile run; linear combinations and economic indexes; scatter plots and exam scores; and logarithmic transformations and metabolic rates.



Bernoulli ◽  
2013 ◽  
Vol 19 (5A) ◽  
pp. 1776-1789 ◽  
Author(s):  
Xiaoqing Pan ◽  
Maochao Xu ◽  
Taizhong Hu


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.



2020 ◽  
Author(s):  
M. Radhakrishnan ◽  
M. Suresh ◽  
V. Mohana Selvi




2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Valery E. Lyubovitskij ◽  
Fabian Wunder ◽  
Alexey S. Zhevlakov

Abstract We discuss new ideas for consideration of loop diagrams and angular integrals in D-dimensions in QCD. In case of loop diagrams, we propose the covariant formalism of expansion of tensorial loop integrals into the orthogonal basis of linear combinations of external momenta. It gives a very simple representation for the final results and is more convenient for calculations on computer algebra systems. In case of angular integrals we demonstrate how to simplify the integration of differential cross sections over polar angles. Also we derive the recursion relations, which allow to reduce all occurring angular integrals to a short set of basic scalar integrals. All order ε-expansion is given for all angular integrals with up to two denominators based on the expansion of the basic integrals and using recursion relations. A geometric picture for partial fractioning is developed which provides a new rotational invariant algorithm to reduce the number of denominators.



Sign in / Sign up

Export Citation Format

Share Document