scholarly journals On the stable rank and real rank of group $C^*$-algebras of nilpotent locally compact groups

2005 ◽  
Vol 97 (1) ◽  
pp. 89
Author(s):  
Robert J. Archbold ◽  
Eberhard Kaniuth

It is shown that if $G$ is an almost connected nilpotent group then the stable rank of $C^*(G)$ is equal to the rank of the abelian group $G/[G,G]$. For a general nilpotent locally compact group $G$, it is shown that finiteness of the rank of $G/[G,G]$ is necessary and sufficient for the finiteness of the stable rank of $C^*(G)$ and also for the finiteness of the real rank of $C^*(G)$.

1968 ◽  
Vol 9 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J. W. Baker

Let H be a group of characters on an (algebraic) abelian group G. In a natural way, we may regard G as a group of characters on H. In this way, we obtain a duality between the two groups G and H. One may pose several problems about this duality. Firstly, one may ask whether there exists a group topology on G for which H is precisely the set of continuous characters. This question has been answered in the affirmative in [1]. We shall say that such a topology is compatible with the duality between G and H. Next, one may ask whether there exists a locally compact group topology on G which is compatible with a given duality and, if so, whether there is more than one such topology. It is this second question (previously considered by other authors, to whom we shall refer below) which we shall consider here.


2012 ◽  
Vol 110 (1) ◽  
pp. 99 ◽  
Author(s):  
Robert J. Archbold ◽  
Eberhard Kaniuth

If $G$ is an almost connected, nilpotent, locally compact group then the real rank of the $C^\ast$-algebra $C^\ast (G)$ is given by $\operatorname {RR} (C^\ast (G)) = \operatorname {rank} (G/[G,G]) = \operatorname {rank} (G_0/[G_0,G_0])$, where $G_0$ is the connected component of the identity element. In particular, for the continuous Heisenberg group $G_3$, $\operatorname {RR} C^\ast (G_3))=2$.


2015 ◽  
Vol 116 (2) ◽  
pp. 250 ◽  
Author(s):  
Yulia Kuznetsova

We present a simple and intuitive framework for duality of locally compacts groups, which is not based on the Haar measure. This is a map, functorial on a non-degenerate subcategory, on the category of coinvolutive Hopf $C^*$-algebras, and a similar map on the category of coinvolutive Hopf-von Neumann algebras. In the $C^*$-version, this functor sends $C_0(G)$ to $C^*(G)$ and vice versa, for every locally compact group $G$. As opposed to preceding approaches, there is an explicit description of commutative and co-commutative algebras in the range of this map (without assumption of being isomorphic to their bidual): these algebras have the form $C_0(G)$ or $C^*(G)$ respectively, where $G$ is a locally compact group. The von Neumann version of the functor puts into duality, in the group case, the enveloping von Neumann algebras of the algebras above: $C_0(G)^{**}$ and $C^*(G)^{**}$.


2017 ◽  
Vol 39 (5) ◽  
pp. 1340-1360 ◽  
Author(s):  
C. R. E. RAJA ◽  
RIDDHI SHAH

We consider the actions of (semi)groups on a locally compact group by automorphisms. We show the equivalence of distality and pointwise distality for the actions of a certain class of groups. We obtain a decomposition for contraction groups of an automorphism under certain conditions. We give a necessary and sufficient condition for distality of an automorphism in terms of its contraction group. We compare classes of (pointwise) distal groups and groups whose closed subgroups are unimodular. In particular, we study relations between distality, unimodularity and contraction subgroups.


2012 ◽  
Vol 86 (2) ◽  
pp. 315-321
Author(s):  
MOHAMMAD JAVAD MEHDIPOUR

AbstractIn this paper we give a necessary and sufficient condition under which the answer to the open problem raised by Ghahramani and Lau (‘Multipliers and modulus on Banach algebras related to locally compact groups’, J. Funct. Anal. 150 (1997), 478–497) is positive.


1974 ◽  
Vol 17 (3) ◽  
pp. 274-284 ◽  
Author(s):  
C. H. Houghton

Freudenthal [5, 7] defined a compactification of a rim-compact space, that is, a space having a base of open sets with compact boundary. The additional points are called ends and Freudenthal showed that a connected locally compact non-compact group having a countable base has one or two ends. Later, Freudenthal [8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group has two ends if and only if it is the direct product of a compact group and the reals.


2019 ◽  
Vol 26 (1) ◽  
pp. 29-33
Author(s):  
Sanjib Basu ◽  
Krishnendu Dutta

Abstract We prove that, under certain restrictions, every locally compact group equipped with a nonzero, σ-finite, regular left Haar measure can be decomposed into two small sets, one of which is small in the sense of measure and the other is small in the sense of category, and all such decompositions originate from a generalised notion of a Lebesgue point. Incidentally, such class of topological groups for which this happens turns out to be metrisable. We also observe an interesting connection between Luzin sets in such spaces and decompositions of the above type.


2012 ◽  
Vol 88 (1) ◽  
pp. 113-122 ◽  
Author(s):  
I. AKBARBAGLU ◽  
S. MAGHSOUDI

AbstractLet $G$ be a locally compact group. In this paper, we show that if $G$ is a nondiscrete locally compact group, $p\in (0, 1)$ and $q\in (0, + \infty ] $, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\text{ is finite } \lambda \text{-a.e.} \} $ is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. We also show that if $G$ is a nondiscrete locally compact group and $p, q, r\in [1, + \infty ] $ such that $1/ p+ 1/ q\gt 1+ 1/ r$, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\in {L}^{r} (G)\} $, is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. Consequently, for $p, q\in [1+ \infty )$ and $r\in [1, + \infty ] $ with $1/ p+ 1/ q\gt 1+ 1/ r$, $G$ is discrete if and only if ${L}^{p} (G)\ast {L}^{q} (G)\subseteq {L}^{r} (G)$; this answers a question raised by Saeki [‘The ${L}^{p} $-conjecture and Young’s inequality’, Illinois J. Math. 34 (1990), 615–627].


1967 ◽  
Vol 7 (4) ◽  
pp. 433-454 ◽  
Author(s):  
Neil W. Rickert

In this paper a number of questions about locally compact groups are studied. The structure of finite dimensional connected locally compact groups is investigated, and a fairly simple representation of such groups is obtained. Using this it is proved that finite dimensional arcwise connected locally compact groups are Lie groups, and that in general arcwise connected locally compact groups are locally connected. Semi-simple locally compact groups are then investigated, and it is shown that under suitable restrictions these satisfy many of the properties of semi-simple Lie groups. For example, a factor group of a semi-simple locally compact group is semi-simple. A result of Zassenhaus, Auslander and Wang is reformulated, and in this new formulation it is shown to be true under more general conditions. This fact is used in the study of (C)-groups in the sense of K. Iwasawa.


Author(s):  
EBERHARD KANIUTH

We show that for an arbitrary locally compact group G and for E in a certain class of closed subsets of the primitive ideal space of L1(G), the kernel k(E) has a bounded approximate unit. This generalizes some well-known previous results.


Sign in / Sign up

Export Citation Format

Share Document