A result on fractional $k$-deleted graphs

2010 ◽  
Vol 106 (1) ◽  
pp. 99 ◽  
Author(s):  
Sizhong Zhou
Keyword(s):  

Let $k\geq 2$ be an integer, and let $G$ be a graph of order $n$ with $n\geq4k-5$. A graph $G$ is a fractional $k$-deleted graph if there exists a fractional $k$-factor after deleting any edge of $G$. The binding number of $G$ is defined as 26741 {\operatorname {bind}} (G)=\min\left\{\frac{|N_G(X)|}{|X|}:\emptyset\neq X\subseteq V(G),N_G(X)\neq V(G)\right\}. 26741 In this paper, it is proved that if ${\operatorname {bind}} (G)>\frac{(2k-1)(n-1)}{k(n-2)}$, then $G$ is a fractional $k$-deleted graph. Furthermore, it is shown that the result in this paper is best possible in some sense.

2017 ◽  
Vol 2 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Sizhong Zhou ◽  
Lan Xu ◽  
Yang Xu

AbstractLet G be a graph, and let k, r be nonnegative integers with k ≥ 2. A k-factor of G is a spanning subgraph F of G such that dF(x) = k for each x ∈ V (G), where dF(x) denotes the degree of x in F. For S ⊆ V (G), NG(S) = ∪x∊SNG(x). The binding number of G is defined by bind$\begin{array}{} (G) = {\rm{min }}\{ \frac{{|{N_G}(S)|}}{{|S|}}:\emptyset \ne S \subset V(G),{N_G}(S) \ne V(G)\} \end{array}$. In this paper, we obtain a binding number and neighborhood condition for a graph to have a k-factor excluding a given r-factor. This result is an extension of the previous results.


2010 ◽  
Vol 2 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Yevgeny Beiderman ◽  
Ehud Rivlin ◽  
Mina Teicher ◽  
Zeev Zalevsky
Keyword(s):  

Author(s):  
Pedro Perez Cutillas ◽  
Gonzalo G. Barberá ◽  
Carmelo Conesa García

El objetivo principal de este trabajo se centra en la determinación y análisis de las variables ambientales que influyen en las divergencias de las estimaciones de erosionabilidad a partir de dos métodos, aplicando tres algoritmos de estimación del Factor K. La exploración de esta información permite conocer el peso que ejerce el origen de los datos de entrada a los modelos en el cómputo de erosionabilidad y qué importancia tiene en función del algoritmo elegido para la estimación del Factor K. Los resultados muestran que las pendientes, así como los índices de vegetación (NDVI) y de composición mineralógico (IOI) obtenidos mediantes técnicas de teledetección han   mostrado los valores de asociación más elevados entre ambos métodos.The main goal of this work is to determine and analyze the influence of environmental variables on the changes of two erodibility methods, through the application of three estimation algorithms of K Factor. The analysis of this information allows knowing the significance of the input data to the models in the erodibility estimation, and likewise the consequence of the algorithm selected for the estimation of K Factor. The results show that the slopes, as well as the vegetation index (NDVI) and the mineralogical composition index (IOI), generated both by remote sensing techniques, have shown the highest values of association between methods.


2021 ◽  
Vol 1962 (1) ◽  
pp. 012005
Author(s):  
Muhammad Apryansyah ◽  
MK Iwa Garniwa
Keyword(s):  

2001 ◽  
Author(s):  
Christopher P. Ausschnitt ◽  
Christopher J. Progler ◽  
William Chu
Keyword(s):  
K Factor ◽  

Author(s):  
Laura Bernado ◽  
Christoph F. Mecklenbrauker ◽  
Thomas Zemen ◽  
Johan Karedal ◽  
Alexander Paier ◽  
...  

2011 ◽  
Vol 10 ◽  
pp. 1437-1440 ◽  
Author(s):  
Xiaoming Chen ◽  
P.-S Kildal ◽  
Sz-Hau Lai

Sign in / Sign up

Export Citation Format

Share Document