A Complex of Modules and Its Applications to Local Cohomology and Extension Functors

2015 ◽  
Vol 117 (1) ◽  
pp. 150 ◽  
Author(s):  
Kamal Bahmanpour

Let $(R,m)$ be a commutative Noetherian complete local ring and let $M$ be a non-zero Cohen-Macaulay $R$-module of dimension $n$. It is shown that, if $\operatorname{projdim}_R(M)<\infty$, then $\operatorname{injdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, and if $\operatorname{injdim}_R(M)<\infty$, then $\operatorname{projdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, where $D(-):= \operatorname{Hom}_{R}(-,E)$ denotes the Matlis dual functor and $E := E_R(R/\mathfrak{m})$ is the injective hull of the residue field $R/\mathfrak{m}$. Also, it is shown that if $(R,\mathfrak{m})$ is a Noetherian complete local ring, $M$ is a non-zero finitely generated $R$-module and $x_1,\ldots,x_k$, $(k\geq 1)$, is an $M$-regular sequence, then \[ D(H^k_{(x_1,\ldots,x_k)}(D(H^k_{(x_1,\ldots,x_k)}(M))))\simeq M. \] In particular, $\operatorname{Ann} H^k_{(x_1,\ldots,x_k)}(M)=\operatorname{Ann} M$. Moreover, it is shown that if $R$ is a Noetherian ring, $M$ is a finitely generated $R$-module and $x_1,\ldots,x_k$ is an $M$-regular sequence, then \[ \operatorname{Ext}^{k+1}_R(R/(x_1,\ldots,x_k),M)=0. \]

2008 ◽  
Vol 15 (03) ◽  
pp. 457-462 ◽  
Author(s):  
A. Mafi ◽  
H. Saremi

Let R be a commutative Noetherian local ring, 𝔞 an ideal of R, and M a finitely generated generalized f-module. Let t be a positive integer such that [Formula: see text] and t > dim M - dim M/𝔞M. In this paper, we prove that there exists an ideal 𝔟 ⊇ 𝔞 such that (1) dim M - dim M/𝔟M = t; and (2) the natural homomorphism [Formula: see text] is an isomorphism for all i > t and it is surjective for i = t. Also, we show that if [Formula: see text] is a finite set for all i < t, then there exists an ideal 𝔟 of R such that dim R/𝔟 ≤ 1 and [Formula: see text] for all i < t.


2012 ◽  
Vol 19 (04) ◽  
pp. 693-698
Author(s):  
Kazem Khashyarmanesh ◽  
M. Tamer Koşan ◽  
Serap Şahinkaya

Let R be a commutative Noetherian ring with non-zero identity, 𝔞 an ideal of R and M a finitely generated R-module. We assume that N is a weakly Laskerian R-module and r is a non-negative integer such that the generalized local cohomology module [Formula: see text] is weakly Laskerian for all i < r. Then we prove that [Formula: see text] is also weakly Laskerian and so [Formula: see text] is finite. Moreover, we show that if s is a non-negative integer such that [Formula: see text] is weakly Laskerian for all i, j ≥ 0 with i ≤ s, then [Formula: see text] is weakly Laskerian for all i ≤ s and j ≥ 0. Also, over a Gorenstein local ring R of finite Krull dimension, we study the question when the socle of [Formula: see text] is weakly Laskerian?


2014 ◽  
Vol 21 (04) ◽  
pp. 605-614 ◽  
Author(s):  
Kamal Bahmanpour ◽  
Reza Naghipour ◽  
Monireh Sedghi

Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, 𝔪). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t ≥ 0 is an integer and [Formula: see text], then [Formula: see text] is not 𝔭-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then [Formula: see text] is finitely generated if and only if 0 ≤ n ∉ W, where [Formula: see text]. Also, we show that if J ⊆ I are 1-dimensional ideals of R, then [Formula: see text] is J-cominimax, and [Formula: see text] is finitely generated (resp., minimax) if and only if [Formula: see text] is finitely generated for all [Formula: see text] (resp., [Formula: see text]). Moreover, the concept of the J-cofiniteness dimension [Formula: see text] of M relative to I is introduced, and we explore an interrelation between [Formula: see text] and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then [Formula: see text].


2014 ◽  
Vol 157 (1) ◽  
pp. 151-167 ◽  
Author(s):  
MORDECHAI KATZMAN ◽  
KARL SCHWEDE ◽  
ANURAG K. SINGH ◽  
WENLIANG ZHANG

AbstractLet R be a local ring of prime characteristic. We study the ring of Frobenius operators ${\mathcal F}(E)$, where E is the injective hull of the residue field of R. In particular, we examine the finite generation of ${\mathcal F}(E)$ over its degree zero component ${\mathcal F}^0(E)$, and show that ${\mathcal F}(E)$ need not be finitely generated when R is a determinantal ring; nonetheless, we obtain concrete descriptions of ${\mathcal F}(E)$ in good generality that we use, for example, to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal rings.


Author(s):  
Hamidreza Karimirad ◽  
Moharram Aghapournahr

Let [Formula: see text] be a commutative Noetherian ring, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] an [Formula: see text]-module with [Formula: see text]. We get equivalent conditions for top local cohomology module [Formula: see text] to be Artinian and [Formula: see text]-cofinite Artinian separately. In addition, we prove that if [Formula: see text] is a local ring such that [Formula: see text] is minimax, for each [Formula: see text], then [Formula: see text] is minimax [Formula: see text]-module for each [Formula: see text] and for each finitely generated [Formula: see text]-module [Formula: see text] with [Formula: see text] and [Formula: see text]. As a consequence we prove that if [Formula: see text] and [Formula: see text], then [Formula: see text] is [Formula: see text]-cominimax if (and only if) [Formula: see text], [Formula: see text] and [Formula: see text] are minimax. We also prove that if [Formula: see text] and [Formula: see text] such that [Formula: see text] is minimax for all [Formula: see text], then [Formula: see text] is [Formula: see text]-cominimax for all [Formula: see text] if (and only if) [Formula: see text] is minimax for all [Formula: see text].


1991 ◽  
Vol 110 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Craig Huneke ◽  
Jee Koh

Let R be a noetherian local ring with maximal ideal m and residue field k. If M is a finitely generated R-module then the local cohomology modules are known to be Artinian. Grothendieck [3], exposé 13, 1·2 made the following conjecture:If I is an ideal of R and M is a finitely generated R-module, then HomR (R/I, ) is finitely generated.


2018 ◽  
Vol 61 (03) ◽  
pp. 705-725
Author(s):  
DIPANKAR GHOSH ◽  
TONY J. PUTHENPURAKAL

AbstractLet R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


2016 ◽  
Vol 59 (2) ◽  
pp. 271-278
Author(s):  
Fatemeh Dehghani-Zadeh

AbstractLet be a graded Noetherian ring with local base ring (R0 ,m0) and let . Let M and N be finitely generated graded R-modules and let a = a0 + R+ an ideal of R. We show that and are Artinian for some i s and j s with a specified property, where bo is an ideal of R0 such that a0 + b0 is an m0-primary ideal.


1990 ◽  
Vol 120 ◽  
pp. 77-88 ◽  
Author(s):  
Nguyen Tu Cuong

Throughout this note, A denotes a commutative local Noetherian ring with maximal ideal m and M a finitely generated A-module with dim (M) = d. Let x1, …, xd be a system of parameters (s.o.p. for short) for M and I the ideal of A generated by x1, …, xd.


Sign in / Sign up

Export Citation Format

Share Document