scholarly journals Rings of Frobenius operators

2014 ◽  
Vol 157 (1) ◽  
pp. 151-167 ◽  
Author(s):  
MORDECHAI KATZMAN ◽  
KARL SCHWEDE ◽  
ANURAG K. SINGH ◽  
WENLIANG ZHANG

AbstractLet R be a local ring of prime characteristic. We study the ring of Frobenius operators ${\mathcal F}(E)$, where E is the injective hull of the residue field of R. In particular, we examine the finite generation of ${\mathcal F}(E)$ over its degree zero component ${\mathcal F}^0(E)$, and show that ${\mathcal F}(E)$ need not be finitely generated when R is a determinantal ring; nonetheless, we obtain concrete descriptions of ${\mathcal F}(E)$ in good generality that we use, for example, to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal rings.

2015 ◽  
Vol 117 (1) ◽  
pp. 150 ◽  
Author(s):  
Kamal Bahmanpour

Let $(R,m)$ be a commutative Noetherian complete local ring and let $M$ be a non-zero Cohen-Macaulay $R$-module of dimension $n$. It is shown that, if $\operatorname{projdim}_R(M)<\infty$, then $\operatorname{injdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, and if $\operatorname{injdim}_R(M)<\infty$, then $\operatorname{projdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, where $D(-):= \operatorname{Hom}_{R}(-,E)$ denotes the Matlis dual functor and $E := E_R(R/\mathfrak{m})$ is the injective hull of the residue field $R/\mathfrak{m}$. Also, it is shown that if $(R,\mathfrak{m})$ is a Noetherian complete local ring, $M$ is a non-zero finitely generated $R$-module and $x_1,\ldots,x_k$, $(k\geq 1)$, is an $M$-regular sequence, then \[ D(H^k_{(x_1,\ldots,x_k)}(D(H^k_{(x_1,\ldots,x_k)}(M))))\simeq M. \] In particular, $\operatorname{Ann} H^k_{(x_1,\ldots,x_k)}(M)=\operatorname{Ann} M$. Moreover, it is shown that if $R$ is a Noetherian ring, $M$ is a finitely generated $R$-module and $x_1,\ldots,x_k$ is an $M$-regular sequence, then \[ \operatorname{Ext}^{k+1}_R(R/(x_1,\ldots,x_k),M)=0. \]


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


Author(s):  
Courtney Gibbons ◽  
David Jorgensen ◽  
Janet Striuli

We introduce a new homological dimension for finitely generated modules over a commutative local ring R R , which is based on a complex derived from a free resolution L L of the residue field of R R , and called L L -dimension. We prove several properties of L L -dimension, give some applications, and compare L L -dimension to complete intersection dimension.


2019 ◽  
Vol 72 (1) ◽  
pp. 225-242
Author(s):  
Cleto B. Miranda-Neto

AbstractWe prove results concerning the multiplicity as well as the Cohen–Macaulay and Gorenstein properties of the special fiber ring $\mathscr{F}(E)$ of a finitely generated $R$-module $E\subsetneq R^{e}$ over a Noetherian local ring $R$ with infinite residue field. Assuming that $R$ is Cohen–Macaulay of dimension 1 and that $E$ has finite colength in $R^{e}$, our main result establishes an asymptotic length formula for the multiplicity of $\mathscr{F}(E)$, which, in addition to being of independent interest, allows us to derive a Cohen–Macaulayness criterion and to detect a curious relation to the Buchsbaum–Rim multiplicity of $E$ in this setting. Further, we provide a Gorensteinness characterization for $\mathscr{F}(E)$ in the more general situation where $R$ is Cohen–Macaulay of arbitrary dimension and $E$ is not necessarily of finite colength, and we notice a constraint in terms of the second analytic deviation of the module $E$ if its reduction number is at least three.


Author(s):  
D. G. Northcott

1. Introduction. The principle of the Conservation of Number is concerned with the following situation. One starts with a system of algebraic equations having only a finite number of solutions and then applies a homomorphism whose domain contains the coefficients of those equations. This produces a new system. Let us suppose that the new system of equations also has only a finite number of solutions. The question then arises as to how the number of solutions before specialization compares with the number present afterwards. In a typical geometrical situation, one usually wishes to assert that the two systems have equally many solutions. However, it is easy to construct algebraic situations where the number changes,† and where the change is not to be explained away through the confluence of solutions or by their slipping off to infinity. At first sight this represents a breakdown of the conservation principle, but this principle has proved so useful in the past that one has a natural reluctance to discard it. The alternative is to attempt a reformulation and in (l) the present author gave such a reformulation for the case in which the specialization consisted in mapping a regular local ring on to its residue field. The modified theory requires that we take account of systems of equations which arise in connexion with the homology modules of a certain complex. The system associated with the homology module of degree zero is found to be the same as the one that arises in the naive theory, and usually this is the only one that makes a contribution. However, in cases where the number of solutions appears to change, the other systems become active and act in such a way that the balance is restored. For an amplification of these remarks we must refer the reader to (l). They are made here to indicate how the relevance of homological concepts first became clear in any detail. In the present paper these ideas are taken further, the principal gain being that it is no longer necessary to restrict the type of specialization to that which consists in mapping a regular local ring on to its residue field. Indeed one can use very general specializations provided that one transfers the homological requirement from the ring to the system of equations under consideration. In this way, one obtains a theory which is more general and, in some of its aspects, simpler as well.


1991 ◽  
Vol 110 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Craig Huneke ◽  
Jee Koh

Let R be a noetherian local ring with maximal ideal m and residue field k. If M is a finitely generated R-module then the local cohomology modules are known to be Artinian. Grothendieck [3], exposé 13, 1·2 made the following conjecture:If I is an ideal of R and M is a finitely generated R-module, then HomR (R/I, ) is finitely generated.


2021 ◽  
pp. 1-18
Author(s):  
BENJAMIN BRIGGS ◽  
ELOÍSA GRIFO ◽  
JOSH POLLITZ

Abstract A local ring R is regular if and only if every finitely generated R-module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $\mathsf {D}^{\mathsf f}(R)$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $\mathsf {D}^{\mathsf f}(R)$ is proxy small. In this paper, we study a return to the world of R-modules, and search for finitely generated R-modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.


2018 ◽  
Vol 17 (11) ◽  
pp. 1850202 ◽  
Author(s):  
Ahad Rahimi

Let [Formula: see text] be a Noetherian local ring and [Formula: see text] a finitely generated [Formula: see text]-module. We say [Formula: see text] has maximal depth if there is an associated prime [Formula: see text] of [Formula: see text] such that depth [Formula: see text]. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen–Macaulay modules with maximal depth are classified. Finally, the attached primes of [Formula: see text] are considered for [Formula: see text].


2020 ◽  
Author(s):  
◽  
Kyle Logan Maddox

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] This dissertation outlines several results about prime characteristic singularities for which the nilpotent part under the induced Frobenius action on local cohomology is either finite colength or the entire module, collectively referred to here as nilpotent singularities. First, we establish a sufficient condition for the finiteness of the Frobenius test exponent for a local ring and apply it to conclude that nilpotent singularities have finite Frobenius test exponent. In joint work with Jennifer Kenkel, Thomas Polstra, and Austyn Simpson, we show that under mild conditions nilpotent singularities descend and ascend along faithfully flat maps. Consequently, we then prove that the loci of primes which are weakly F-nilpotent and F-nilpotent are open in the Zariski topology for rings which are either F-finite or essentially of fiiite type over an excellent local ring.


2021 ◽  
Vol 28 (01) ◽  
pp. 13-32
Author(s):  
Nguyen Tien Manh

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text], [Formula: see text] an ideal of [Formula: see text], [Formula: see text] an [Formula: see text]-primary ideal of [Formula: see text], [Formula: see text] a finitely generated [Formula: see text]-module, [Formula: see text] a finitely generated standard graded algebra over [Formula: see text] and [Formula: see text] a finitely generated graded [Formula: see text]-module. We characterize the multiplicity and the Cohen–Macaulayness of the fiber cone [Formula: see text]. As an application, we obtain some results on the multiplicity and the Cohen–Macaulayness of the fiber cone[Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document