Von Neumann Algebra Preduals Satisfy the Linear Biholomorphic Property
We prove that for every $\mathrm{JBW}^*$-triple $E$ of rank $>1$, the symmetric part of its predual reduces to zero. Consequently, the predual of every infinite dimensional von Neumann algebra $A$ satisfies the linear biholomorphic property, that is, the symmetric part of $A_*$ is zero.
1966 ◽
Vol 18
◽
pp. 897-900
◽
1995 ◽
Vol 38
(2)
◽
pp. 230-236
◽
2017 ◽
Vol 2019
(15)
◽
pp. 4579-4602
1977 ◽
Vol 81
(2)
◽
pp. 233-236
◽
1999 ◽
Vol 129
(6)
◽
pp. 1107-1114
◽
1969 ◽
Vol 21
◽
pp. 1293-1308
◽
2020 ◽
pp. 89-93