scholarly journals Oscillation Theory for the Density of States of High Dimensional Random Operators

2017 ◽  
Vol 2019 (15) ◽  
pp. 4579-4602
Author(s):  
Julian Groß mann ◽  
Hermann Schulz-Baldes ◽  
Carlos Villegas-Blas

Abstract Sturm–Liouville oscillation theory is studied for Jacobi operators with block entries given by covariant operators on an infinite dimensional Hilbert space. It is shown that the integrated density of states of the Jacobi operator is approximated by the winding of the Prüfer phase w.r.t. the trace per unit volume. This rotation number can be interpreted as a spectral flow in a von Neumann algebra with finite trace.

2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Shavkat Ayupov ◽  
Karimbergen Kudaybergenov ◽  
Berdakh Nurjanov ◽  
Amir Alauadinov

AbstractThe paper is devoted to so-called local and 2-local derivations on the noncommutative Arens algebra L ω(M,τ) associated with a von Neumann algebra M and a faithful normal semi-finite trace τ. We prove that every 2-local derivation on L ω(M,τ) is a spatial derivation, and if M is a finite von Neumann algebra, then each local derivation on L ω(M,τ) is also a spatial derivation and every 2-local derivation on M is in fact an inner derivation.


1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


2011 ◽  
Vol 13 (04) ◽  
pp. 643-657 ◽  
Author(s):  
S. ALBEVERIO ◽  
SH. A. AYUPOV ◽  
K. K. KUDAYBERGENOV ◽  
B. O. NURJANOV

The paper is devoted to local derivations on the algebra [Formula: see text] of τ-measurable operators affiliated with a von Neumann algebra [Formula: see text] and a faithful normal semi-finite trace τ. We prove that every local derivation on [Formula: see text] which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras, they all are inner derivations. It is proved that for type I finite von Neumann algebras without an abelian direct summand, and also for von Neumann algebras with the atomic lattice of projections, the continuity condition on local derivations in the above results is redundant. Finally we give necessary and sufficient conditions on a commutative von Neumann algebra [Formula: see text] for the algebra [Formula: see text] to admit local derivations which are not derivations.


1994 ◽  
Vol 05 (03) ◽  
pp. 329-348
Author(s):  
JEAN MARION

Let M be a compact smooth manifold, let [Formula: see text] be a unital involutive subalgebra of the von Neumann algebra £ (H) of bounded linear operators of some Hilbert space H, let [Formula: see text] be the unital involutive algebra [Formula: see text], let [Formula: see text] be an hermitian projective right [Formula: see text]-module of finite type, and let [Formula: see text] be the gauge group of unitary elements of the unital involutive algebra [Formula: see text] of right [Formula: see text]-linear endomorphisms of [Formula: see text]. We first prove that noncommutative geometry provides the suitable setting upon which a consistent theory of energy representations [Formula: see text] can be built. Three series of energy representations are constructed. The first consists of energy representations of the gauge group [Formula: see text], [Formula: see text] being the group of unitary elements of [Formula: see text], associated with integrable Riemannian structures of M, and the second series consists of energy representations associated with (d, ∞)-summable K-cycles over [Formula: see text]. In the case where [Formula: see text] is a von Neumann algebra of type II 1 a third series is given: we introduce the notion of regular quasi K-cycle, we prove that regular quasi K-cycles over [Formula: see text] always exist, and that each of them induces an energy representation.


2016 ◽  
Vol 118 (2) ◽  
pp. 277
Author(s):  
Antonio M. Peralta ◽  
László L. Stachó

We prove that for every $\mathrm{JBW}^*$-triple $E$ of rank $>1$, the symmetric part of its predual reduces to zero. Consequently, the predual of every infinite dimensional von Neumann algebra $A$ satisfies the linear biholomorphic property, that is, the symmetric part of $A_*$ is zero.


1983 ◽  
Vol 24 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Christopher Barnett

The origin of the theory of averaging operators is explained in [1]. The theory has been developed on spaces of continuous functions that vanish at infinity by Kelley in [3] and on the Lp spaces of measure theory by Rota [5]. The motivation for this paper arose out of the latter paper. The aim of this paper is to prove a generalisation of Rota's main representation theorem (every average is a conditional expectation) in the context of a ‘non commutative integration’. This context is as follows. Let be a finite von Neumann algebra and ϕ a faithful normal finite trace on such that ϕ(I) = 1, where I is the identity of . We can construct the Banach spaces Lp (, ϕ), where 1 ≤ p < °, with norm ∥x∥p = ϕ(÷x÷p)1/p, of possibly unbounded operators affiliated with , as in [9]. We note that is dense in Lp(, ϕ). These spaces share many of the features of the Lp spaces of measure theory; indeed if is abelian then Lp(,ϕ) is isometrically isomorphic to Lp of some measure space.


2011 ◽  
Vol 22 (07) ◽  
pp. 1031-1050
Author(s):  
ESTEBAN ANDRUCHOW ◽  
GABRIEL LAROTONDA

Let [Formula: see text] be a von Neumann algebra with a finite trace τ, represented in [Formula: see text], and let [Formula: see text] be sub-algebras, for t in an interval I (0 ∈ I). Let [Formula: see text] be the unique τ-preserving conditional expectation. We say that the path t ↦ Et is smooth if for every [Formula: see text] and [Formula: see text], the map [Formula: see text] is continuously differentiable. This condition implies the existence of the derivative operator [Formula: see text] If this operator satisfies the additional boundedness condition, [Formula: see text] for any closed bounded subinterval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras [Formula: see text] are *-isomorphic. More precisely, there exists a curve [Formula: see text], t ∈ I of unital, *-preserving linear isomorphisms which intertwine the expectations, [Formula: see text] The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps [Formula: see text] onto [Formula: see text]. We show that this restriction is a multiplicative isomorphism.


2007 ◽  
Vol 10 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Daniel Lenz ◽  
Norbert Peyerimhoff ◽  
Ivan Veselić

Author(s):  
A.A. Alimov ◽  
V.I. Chilin

Let mathcal M be a von Neumann algebra equipped with a faithful normal finite trace tau, and let Sleft( mathcalM, tauright) be an ast -algebra of all tau -measurable operators affiliated with mathcal M . For x in Sleft( mathcalM, tauright) the generalized singular value function mu(x):trightarrow mu(tx), t0, is defined by the equality mu(tx)infxp_mathcalM:, p2pp in mathcalM, , tau(mathbf1-p)leq t. Let psi be an increasing concave continuous function on 0, infty) with psi(0) 0, psi(infty)infty, and let Lambda_psi(mathcal M,tau) left x in Sleft( mathcalM, tauright): x _psi int_0inftymu(tx)dpsi(t) infty right be the non-commutative Lorentz space. A surjective (not necessarily linear) mapping V:, Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) is called a surjective 2-local isometry, if for any x, y in Lambda_psi(mathcal M,tau) there exists a surjective linear isometry V_x, y:, Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) such that V(x) V_x, y(x) and V(y) V_x, y(y). It is proved that in the case when mathcalM is a factor, every surjective 2-local isometry V:Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) is a linear isometry.


Sign in / Sign up

Export Citation Format

Share Document