scholarly journals Upconversion Nanophosphors Naluf4:Yb,Tm for Lymphatic Imaging In Vivo by Real-Time Upconversion Luminescence Imaging under Ambient Light and High-Resolution X-ray CT

Theranostics ◽  
2013 ◽  
Vol 3 (5) ◽  
pp. 346-353 ◽  
Author(s):  
Yun Sun ◽  
Juanjuan Peng ◽  
Wei Feng ◽  
Fuyou Li
BME Frontiers ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoyang Liu ◽  
Parag Karmarkar ◽  
Dirk Voit ◽  
Jens Frahm ◽  
Clifford R. Weiss ◽  
...  

Objective. Atherosclerosis is a leading cause of mortality and morbidity. Optical endoscopy, ultrasound, and X-ray offer minimally invasive imaging assessments but have limited sensitivity for characterizing disease and therapeutic response. Magnetic resonance imaging (MRI) endoscopy is a newer idea employing tiny catheter-mounted detectors connected to the MRI scanner. It can see through vessel walls and provide soft-tissue sensitivity, but its slow imaging speed limits practical applications. Our goal is high-resolution MRI endoscopy with real-time imaging speeds comparable to existing modalities. Methods. Intravascular (3 mm) transmit-receive MRI endoscopes were fabricated for highly undersampled radial-projection MRI in a clinical 3-tesla MRI scanner. Iterative nonlinear reconstruction was accelerated using graphics processor units connected via a single ethernet cable to achieve true real-time endoscopy visualization at the scanner. MRI endoscopy was performed at 6-10 frames/sec and 200-300 μm resolution in human arterial specimens and porcine vessels ex vivo and in vivo and compared with fully sampled 0.3 frames/sec and three-dimensional reference scans using mutual information (MI) and structural similarity (3-SSIM) indices. Results. High-speed MRI endoscopy at 6-10 frames/sec was consistent with fully sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. A 20-30-fold speed-up vs. 0.3 frames/sec reference scans came at a cost of ~7% in MI and ~45% in 3-SSIM, with reduced motion sensitivity. Conclusion. High-resolution MRI endoscopy can now be performed at frame rates comparable to those of X-ray and optical endoscopy and could provide an alternative to existing modalities, with MRI’s advantages of soft-tissue sensitivity and lack of ionizing radiation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi230-vi230
Author(s):  
Sadaf Soloukey ◽  
Luuk Verhoef ◽  
Frits Mastik ◽  
Bastian Generowicz ◽  
Eelke Bos ◽  
...  

Abstract BACKGROUND Neurosurgical practice still relies heavily on pre-operatively acquired images to guide tumor resections, a practice which comes with inherent pitfalls such as registration inaccuracy due to brain shift, and lack of real-time functional or morphological feedback. Here we describe functional Ultrasound (fUS) as a new high-resolution, depth-resolved, MRI/CT-registered imaging technique able to detect functional regions and vascular morphology during awake and anesthesized tumor resections. MATERIALS AND METHODS fUS relies on high-frame-rate (HFR) ultrasound, making the technique sensitive to very small motions caused by vascular dynamics (µDoppler) and allowing measurements of changes in cerebral blood volume (CBV) with micrometer-millisecond precision. This opens up the possibility to 1) detect functional response, as CBV-changes reflect changes in metabolism of activated neurons through neurovascular coupling, and 2) visualize in-vivo vascular morphology of pathological and healthy tissue with high resolution at unprecedented depths. During a range of anesthetized and awake neurosurgical procedures we acquired vascular and functional images of brain and spinal cord using conventional ultrasound probes connected to a research acquisition system. Building on Brainlab’s Intra-Operative Navigation modules, we co-registered our intra-operative Power Doppler Images (PDIs) to patient-registered MRI/CT-data in real-time. RESULTS During meningioma and glioma resections, our co-registered PDIs revealed fUS’ ability to visualize the tumor’s feeding vessels and vascular borders in real-time, with a level of detail unprecedented by conventional MRI-sequences. During awake resections, fUS was able to detect distinct, ESM-confirmed functional areas as activated during conventional motor and language tasks. In all cases, images were acquired with micrometer-millisecond (300 µm, 1.5–2.0 ms) precision at imaging depths exceeding 5 cm. CONCLUSION fUS is a new real-time, high-resolution and depth-resolved imaging technique, combining favorable imaging specifications with characteristics such as mobility and ease of use which are uniquely beneficial for a potential image-guided neurosurgical tool.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rhiannon P. Murrie ◽  
Freda Werdiger ◽  
Martin Donnelley ◽  
Yu-wei Lin ◽  
Richard P. Carnibella ◽  
...  

1982 ◽  
Vol 46 (6) ◽  
pp. 1009-1013 ◽  
Author(s):  
Shih-Lin Chang ◽  
Hans-Joachim Queisser ◽  
Helmut Baumgart ◽  
Werner Hagen ◽  
Werner Hartmann

2015 ◽  
Vol 1 (1) ◽  
pp. 286-289
Author(s):  
Philipp Jauer ◽  
Franziska Hainer ◽  
Floris Ernst

AbstractIn the recent past, 3D ultrasound has been gaining relevance in many biomedical applications. One main limitation, however, is that typical ultrasound volumes are either very poorly resolved or only cover small areas. We have developed a GPU-accelerated method for live fusion of freehand 3D ultrasound sweeps to create one large volume. The method has been implemented in CUDA and is capable of generating an output volume with 0.5 mm resolution in real time while processing more than 45 volumes per second, with more than 300.000 voxels per volume. First experiments indicate that large structures like a whole forearm or high-resolution volumes of smaller structures like the hand can be combined efficiently. It is anticipated that this technology will be helpful in pediatric surgery where X-ray or CT imaging is not always possible.


2014 ◽  
Vol 41 (6Part27) ◽  
pp. 468-468
Author(s):  
E Izaguirre ◽  
S Price ◽  
T Knewtson ◽  
S Loyalka ◽  
D Rangaraj

Sign in / Sign up

Export Citation Format

Share Document