scholarly journals Counting Triangulations of Planar Point Sets

10.37236/557 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Micha Sharir ◽  
Adam Sheffer

We study the maximal number of triangulations that a planar set of $n$ points can have, and show that it is at most $30^n$. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper bound of $43^n$ for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it can be used to derive new upper bounds for the number of planar graphs ($207.84^n$), spanning cycles ($O(68.67^n)$), spanning trees ($O(146.69^n)$), and cycle-free graphs ($O(164.17^n)$).

2002 ◽  
Vol 12 (05) ◽  
pp. 429-443 ◽  
Author(s):  
NAOKI KATOH ◽  
HISAO TAMAKI ◽  
TAKESHI TOKUYAMA

We give an optimal bound on the number of transitions of the minimum weight base of an integer valued parametric polymatroid. This generalizes and unifies Tamal Dey's O(k1/3 n) upper bound on the number of k-sets (and the complexity of the k-level of a straight-line arrangement), David Eppstein's lower bound on the number of transitions of the minimum weight base of a parametric matroid, and also the Θ(kn) bound on the complexity of the at-most-k level (the union of i-levels for i = 1,2,…,k) of a straight-line arrangement. As applications, we improve Welzl's upper bound on the sum of the complexities of multiple levels, and apply this bound to the number of different equal-sized-bucketings of a planar point set with parallel partition lines. We also consider an application to a special parametric transportation problem.


2013 ◽  
Vol 22 (6) ◽  
pp. 935-954 ◽  
Author(s):  
MICHA SHARIR ◽  
ADAM SHEFFER

We study cross-graph charging schemes for graphs drawn in the plane. These are charging schemes where charge is moved across vertices of different graphs. Such methods have recently been used to obtain various properties of triangulations that are embedded in a fixed set of points in the plane. We generalize this method to obtain results for various other types of graphs that are embedded in the plane. Specifically, we obtain a new bound ofO*(187.53N) (where theO*(⋅) notation hides polynomial factors) for the maximum number of crossing-free straight-edge graphs that can be embedded in any specific set ofNpoints in the plane (improving upon the previous best upper bound 207.85Nin Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several other types of plane graphs (such as connected and bi-connected plane graphs), and obtain various bounds on the expected vertex-degrees in graphs that are uniformly chosen from the set of all crossing-free straight-edge graphs that can be embedded in a specific point set.We then apply the cross-graph charging-scheme method to graphs that allow certain types of crossings. Specifically, we consider graphs with no set ofkpairwise crossing edges (more commonly known ask-quasi-planar graphs). Fork=3 andk=4, we prove that, for any setSofNpoints in the plane, the number of graphs that have a straight-edgek-quasi-planar embedding overSis only exponential inN.


2019 ◽  
Vol 29 (04) ◽  
pp. 301-306
Author(s):  
Danny Rorabaugh

A planar point set is in convex position precisely when it has a convex polygonization, that is, a polygonization with maximum interior angle measure at most [Formula: see text]. We can thus talk about the convexity of a set of points in terms of its min-max interior angle measure. The main result presented here is a nontrivial upper bound of the min-max value in terms of the number of points in the set. Motivated by a particular construction, we also pose a natural conjecture for the best upper bound.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyun Wang ◽  
Xianquan Zhang

Point pattern matching is an important topic of computer vision and pattern recognition. In this paper, we propose a point pattern matching algorithm for two planar point sets under Euclidean transform. We view a point set as a complete graph, establish the relation between the point set and the complete graph, and solve the point pattern matching problem by finding congruent complete graphs. Experiments are conducted to show the effectiveness and robustness of the proposed algorithm.


2013 ◽  
Vol 23 (04n05) ◽  
pp. 357-395 ◽  
Author(s):  
THERESE BIEDL ◽  
MARTIN VATSHELLE

In this paper, we study the point-set embeddability problem, i.e., given a planar graph and a set of points, is there a mapping of the vertices to the points such that the resulting straight-line drawing is planar? It was known that this problem is NP-hard if the embedding can be chosen, but becomes polynomial for triangulated graphs of treewidth 3. We show here that in fact it can be answered for all planar graphs with a fixed combinatorial embedding that have constant treewidth and constant face-degree. We prove that as soon as one of the conditions is dropped (i.e., either the treewidth is unbounded or some faces have large degrees), point-set embeddability with a fixed embedding becomes NP-hard. The NP-hardness holds even for a 3-connected planar graph with constant treewidth, triangulated planar graphs, or 2-connected outer-planar graphs. These results also show that the convex point-set embeddability problem (where faces must be convex) is NP-hard, but we prove that it becomes polynomial if the graph has bounded treewidth and bounded maximum degree.


10.37236/484 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ondřej Bílka ◽  
Kevin Buchin ◽  
Radoslav Fulek ◽  
Masashi Kiyomi ◽  
Yoshio Okamoto ◽  
...  

Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets $P$ and $Q$ with $|P| = m$ and $|Q| = n$. They proved that $M(m,n)=O(m^{2/3}n^{2/3}+m+n)$, and asked whether a superlinear lower bound exists for $M(n,n)$. In this note, we show that their upper bound is the best possible apart from constant factors.


2019 ◽  
Vol 64 (3) ◽  
pp. 965-984
Author(s):  
István Kovács ◽  
Géza Tóth

Abstract A planar point set of n points is called $$\gamma $$ γ -dense if the ratio of the largest and smallest distances among the points is at most $$\gamma \sqrt{n}$$ γ n . We construct a dense set of n points in the plane with $$ne^{\Omega ({\sqrt{\log n}})}$$ n e Ω ( log n ) halving lines. This improves the bound $$\Omega (n\log n)$$ Ω ( n log n ) of Edelsbrunner et al. (Discrete Comput Geom 17(3):243–255, 1997). Our construction can be generalized to higher dimensions, for any d we construct a dense point set of n points in $$\mathbb {R}^d$$ R d with $$n^{d-1}e^{\Omega ({\sqrt{\log n}})}$$ n d - 1 e Ω ( log n ) halving hyperplanes. Our lower bounds are asymptotically the same as the best known lower bounds for general point sets.


2008 ◽  
Vol 50 (3) ◽  
pp. 595-604 ◽  
Author(s):  
PEDRO L. Q. PERGHER ◽  
FÁBIO G. FIGUEIRA

AbstractLet Mm be a closed smooth manifold with an involution having fixed point set of the form Fn ∪ F2, where Fn and F2 are submanifolds with dimensions n and 2, respectively, where n ≥ 4 is even (n < m). Suppose that the normal bundle of F2 in Mm, μ → F2, does not bound, and denote by β the stable cobordism class of μ → F2. In this paper, we determine the upper bound for m in terms of the pair (n, β) for many such pairs. The similar question for n odd (n ≥ 3) was completely solved in a previous paper of the authors. The existence of these upper bounds is guaranteed by the famous 5/2-theorem of Boardman, which establishes that, under the above hypotheses, m ≤ 5/2n.


2021 ◽  
Author(s):  
Michał Dębski ◽  
Piotr Micek ◽  
Felix Schröder ◽  
Stefan Felsner

A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$ either $\phi$ uses more than $p$ colors on $H$ or there is a color that appears exactly once on $H$. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function $f$ such that for every $p\geq1$, every graph in the class admits a $p$-centered coloring using at most $f(p)$ colors. In this paper, we give upper bounds for the maximum number of colors needed in a $p$-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit $p$-centered colorings with $O(p^3\log p)$ colors where the previous bound was $O(p^{19})$; (2) bounded degree graphs admit $p$-centered colorings with $O(p)$ colors while it was conjectured that they may require exponential number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth $t$ that require $\binom{p+t}{t}$ colors in any $p$-centered coloring. This bound matches the upper bound; (5) there are planar graphs that require $\Omega(p^2\log p)$ colors in any $p$-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth $3$. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.


Sign in / Sign up

Export Citation Format

Share Document