scholarly journals The cost of carbon dioxide removal via Direct Air Mineralization of natural rocks: Case studies in Japan

2021 ◽  
Author(s):  
Corey Myers
2013 ◽  
Vol 14 (2) ◽  
pp. 169-173
Author(s):  
Tim Hughes ◽  
Andrew Slack ◽  
William Bernal ◽  
Julia Wendon ◽  
Simon Finney ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Felix Schenuit ◽  
Rebecca Colvin ◽  
Mathias Fridahl ◽  
Barry McMullin ◽  
Andy Reisinger ◽  
...  

Since the adoption of the Paris Agreement in 2015, spurred by the 2018 IPCC Special Report on Global Warming of 1.5°C, net zero emission targets have emerged as a new organizing principle of climate policy. In this context, climate policymakers and stakeholders have been shifting their attention to carbon dioxide removal (CDR) as an inevitable component of net zero targets. The importance of CDR would increase further if countries and other entities set net-negative emissions targets. The scientific literature on CDR governance and policy is still rather scarce, with empirical case studies and comparisons largely missing. Based on an analytical framework that draws on the multi-level perspective of sociotechnical transitions as well as existing work on CDR governance, we gathered and assessed empirical material until early 2021 from 9 Organization for Economic Co-operation and Development (OECD) cases: the European Union and three of its Member States (Ireland, Germany, and Sweden), Norway, the United Kingdom, Australia, New Zealand, and the United States. Based on a synthesis of differences and commonalities, we propose a tripartite conceptual typology of the varieties of CDR policymaking: (1) incremental modification of existing national policy mixes, (2) early integration of CDR policy that treats emission reductions and removals as fungible, and (3) proactive CDR policy entrepreneurship with support for niche development. Although these types do not necessarily cover all dimensions relevant for CDR policy and are based on a limited set of cases, the conceptual typology might spur future comparative work as well as more fine-grained case-studies on established and emerging CDR policies.


2017 ◽  
Author(s):  
Christian Holz ◽  
Lori S Siegel ◽  
Eleanor Johnston ◽  
Andrew P Jones ◽  
John Sterman

2021 ◽  
pp. 104955
Author(s):  
Carlos Paulo ◽  
Ian M. Power ◽  
Amanda R. Stubbs ◽  
Baolin Wang ◽  
Nina Zeyen ◽  
...  

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110196
Author(s):  
Brendon Mpofu ◽  
Hembe E Mukaya ◽  
Diakanua B Nkazi

Carbon dioxide has been identified as one of the greenhouse gases responsible for global warming. Several carbon capture and storage technologies have been developed to mitigate the large quantities of carbon dioxide released into the atmosphere, but these are quite expensive and not easy to implement. Thus, this research analyses the technical and economic feasibility of using calcium leached from cow bone to capture and store carbon dioxide through the mineral carbonation process. The capturing process of carbon dioxide was successful using the proposed technique of leaching calcium from cow shinbone (the tibia) in the presence of HCl by reacting the calcium solution with gaseous carbon dioxide. AAS and XRF analysis were used to determine the concentration of calcium in leached solutions and the composition of calcium in cow bone respectively. The best leaching conditions were found to be 4 mole/L HCl and leaching time of 6 h. Under these conditions, a leaching efficiency of 91% and a calcium conversion of 83% in the carbonation reaction were obtained. Other factors such as carbonation time, agitation rate, and carbonation reaction temperature had little effect on the yield. A preliminary cost analysis showed that the cost to capture 1 ton of CO2 with the proposed technique is about US$ 268.32, which is in the acceptable range of the capturing process. However, the cost of material used and electricity should be reviewed to reduce the preliminary production cost.


2013 ◽  
Vol 37 ◽  
pp. 1888-1896 ◽  
Author(s):  
J.G.M.-S. Monteiro ◽  
D.D.D. Pinto ◽  
X. Luo ◽  
H. Knuutila ◽  
S. Hussain ◽  
...  

2021 ◽  
pp. 100043
Author(s):  
Gokul Iyer ◽  
Leon Clarke ◽  
Jae Edmonds ◽  
Allen Fawcett ◽  
Jay Fuhrman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document