co2 mineralization
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 57)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Sabrina Marecos ◽  
Rae Brigham ◽  
Anastacia Dressel ◽  
Larissa Gaul ◽  
Linda Li ◽  
...  

By the end of the century tens of gigatonnes of CO2 will need to be removed from the atmosphere every year to maintain global temperatures. Natural weathering of ultramafic rocks and subsequent mineralization reactions can convert atmospheric CO2 into ultra-stable carbonates. But, while natural weathering will eventually draw down all excess CO2, this process will need hundreds of thousands of years to do it. The CO2 mineralization process could be accelerated by weathering ultramafic rocks with biodegradable lixiviants like organic acids. But, in this article we show that if these lixiviants are produced from cellulosic biomass, the demand created by CO2 mineralization could monopolize the world's supply of biomass even if CO2 mineralization performance is high. In this article we demonstrate that electromicrobial production technologies that (EMP) combine renewable electricity and microbial metabolism could produce lixiviants for as little as $200 to $400 per tonne at solar electricity prices achievable within the decade. Furthermore, this allows the lixiviants needed to sequester a tonne of CO2 to produced for less than $100, even with modest CO2 mineralization performance.


Desalination ◽  
2022 ◽  
Vol 519 ◽  
pp. 115309
Author(s):  
Jun-Hwan Bang ◽  
Soo-Chun Chae ◽  
Kyungsun Song ◽  
Seung-Woo Lee

2022 ◽  
Vol 176 ◽  
pp. 107315
Author(s):  
Seung-Jae Mun ◽  
Sang-Jun Han ◽  
Jung-Ho Wee

2021 ◽  
Vol 9 ◽  
Author(s):  
Barbara Olfe-Kräutlein ◽  
Till Strunge ◽  
Anna Chanin

Like other hard-to-abate sectors, the cement and concrete industry is facing growing pressure to reduce CO2 emissions. In this context, the carbonation of minerals or industrial wastes with CO2 (CO2 mineralization) is attracting growing interest in research and industry as well as among policy makers. Despite their technical feasibility, few of these innovative carbon capture and utilization (CCU) technologies have so far reached the commercialization stage. Due to their low maturity and potentially higher market prices, these technologies presently require policy support in order to realize their full sustainability potentials. This paper elucidates which policies are considered appropriate, in the literature, for fostering the further development and implementation of CCU technologies and thus achieving the sustainability potential of CO2 mineralization applications. First, we performed a meta-analysis of recent literature in order to identify policies and measures that potentially represent barriers or incentives to the development and deployment of CO2 mineralization technologies, and categorized them as technology-push or market-pull policies. As a second step, we conducted an online survey of policy-making priorities among experts in the field. This identified numerous relevant policies, of which the majority are market-oriented. While most existing market-pull policies do currently not support CCU technologies and would require adaptation to do so, technology-push policies already provide support for their development. However, while the need for technology-push support in the early development phases is still continued, the broad spectrum of market-pull policies that are considered relevant shows that a shifting focus of policy support is required to better address the current state of development of CO2 mineralization technologies and their upcoming market entry.


2021 ◽  
Vol 5 (1) ◽  
pp. 60
Author(s):  
Anthony Kastrinakis ◽  
Vasilios Skliros ◽  
Petros Tsakiridis ◽  
Maria Perraki

Synthetic nesquehonite with a Mg(HCO3)OH·2H2O chemical formula is a solid product of CO2 mineralization with cementitious properties. It constitutes an “MHCH” (magnesium hydroxy-carbonate hydrate) phase and, along with dypingite and hydromagnesite, is considered to be a promising permanent and safe solution for CO2 storage with potential utilization as a supplementary material in “green” building materials. In this work, synthetic nesquehonite-based mortars were evaluated in terms of their compressive strengths. Nesquehonite was synthesized by CO2 mineralization under ambient conditions (25 °C and 1 atm). A saturated Mg2+ solution was used at a pH of 9.3. The synthesized nesquehonite was subsequently studied by means of optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impurity-free nesquehonite formed elongated fibers, often around a centerpiece, creating a rosette-like structure. The synthesized nesquehonite was mixed with reactive magnesia, natural pozzolan, standard aggregate sand and water to create a mortar. The mortar was cast into 5 × 5 × 5 silicone mold and cured in water for 28 days. A compressive strength of up to 22 MPa was achieved. An X-ray diffraction study of the cured mortars revealed the formation of brucite as the main hydration crystalline phase. Carbon dioxide mineralized nesquehonite is a very promising “green” building material with competitive properties that might prove to be an essential part of the circular economy industrial approach.


Author(s):  
Jiajie Wang ◽  
Noriaki Watanabe ◽  
Kosuke Inomoto ◽  
Masanobu Kamitakahara ◽  
Kengo Nakamura ◽  
...  

2021 ◽  
Vol 5 ◽  
pp. 100280
Author(s):  
Gianluca Natrella ◽  
Alessia Borgogna ◽  
Annarita Salladini ◽  
Gaetano Iaquaniello

Clean Energy ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 587-599
Author(s):  
Sylvia Sleep ◽  
Raghav Munjal ◽  
Michael Leitch ◽  
Marcius Extavour ◽  
Adriana Gaona ◽  
...  

Abstract Life cycle assessments (LCAs) of early-stage technologies can provide valuable insights about key drivers of emissions and aid in prioritizing research into further emissions-reduction opportunities. Despite this potential value, further development of LCA methods is required to handle the increased uncertainty, data gaps, and confidentially of early-stage data. This study presents a discussion of the life cycle carbon footprinting of technologies competing in the final round of the NRG COSIA Carbon XPRIZE competition—a US$20 million competition for teams to demonstrate the conversion of CO2 into valuable products at the scale of a small industrial pilot using consistent deployment conditions, boundaries, and methodological assumptions. This competition allowed the exploration of how LCA can be used and further improved when assessing disparate and early-stage technologies. Carbon intensity estimates are presented for two conversion pathways: (i) CO2 mineralization and (ii) catalytic conversion (including thermochemical, electrochemical, photocatalytic and hybrid process) of CO2, aggregated across teams to highlight the range of emissions intensities demonstrated at the pilot for individual life cycle stages. A future scenario is also presented, demonstrating the incremental technology and deployment conditions that would enable a team to become carbon-avoiding relative to an incumbent process (i.e. reducing emissions relative to a reference pathway producing a comparable product). By considering the assessment process across a diverse set of teams, conversion pathways and products, the study presents generalized insights about opportunities and challenges facing carbon capture and -utilization technologies in their next phases of deployment from a life cycle perspective.


2021 ◽  
pp. 133056
Author(s):  
Fen Yue ◽  
Zeqin Chen ◽  
Xiaoqiang Liu ◽  
Zhiyu Xue ◽  
Xue Yang ◽  
...  

2021 ◽  
Vol 295 ◽  
pp. 113095
Author(s):  
Hasanthi L. Senevirathna ◽  
Andrei Lebedev ◽  
Victor Yaohui Chen ◽  
Chuen-Shii Chou ◽  
Ping Wu

Sign in / Sign up

Export Citation Format

Share Document