scholarly journals Mineral carbonation process of carbon dioxide using animal bone

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110196
Author(s):  
Brendon Mpofu ◽  
Hembe E Mukaya ◽  
Diakanua B Nkazi

Carbon dioxide has been identified as one of the greenhouse gases responsible for global warming. Several carbon capture and storage technologies have been developed to mitigate the large quantities of carbon dioxide released into the atmosphere, but these are quite expensive and not easy to implement. Thus, this research analyses the technical and economic feasibility of using calcium leached from cow bone to capture and store carbon dioxide through the mineral carbonation process. The capturing process of carbon dioxide was successful using the proposed technique of leaching calcium from cow shinbone (the tibia) in the presence of HCl by reacting the calcium solution with gaseous carbon dioxide. AAS and XRF analysis were used to determine the concentration of calcium in leached solutions and the composition of calcium in cow bone respectively. The best leaching conditions were found to be 4 mole/L HCl and leaching time of 6 h. Under these conditions, a leaching efficiency of 91% and a calcium conversion of 83% in the carbonation reaction were obtained. Other factors such as carbonation time, agitation rate, and carbonation reaction temperature had little effect on the yield. A preliminary cost analysis showed that the cost to capture 1 ton of CO2 with the proposed technique is about US$ 268.32, which is in the acceptable range of the capturing process. However, the cost of material used and electricity should be reviewed to reduce the preliminary production cost.

Author(s):  
Kyriaki Kelektsoglou

While the demand in reduction of CO2 increases, the need for CO2 sequestration processes is very high. One promising technology is the Carbon Capture and Storage (CCS). In this paper we refer to several papers which study the three main steps in CCS chain. CO2 capture technologies, CO2 transportation to the storage sites and the very critical step the CO2 storage. Recently a novel method (mineral carbonation) for CO2 sequestration has been proposed which is based in the reaction of CO2 with calcium or magnesium oxides or hydroxides to form stable carbonate materials. Greece is a country that emits CO2 mainly from the lignite fired power plant in Western Greece. After the study of the bibliographic references about the use of mineral carbonation process while injecting CO2 in the appropriate geological forms we concluded that there are also these forms in our country and mainly in the area near to the power plant such as in sites Vourinos and Pindos. In these sites exist minerals rich in oxides and hydroxides of Ca, Mg and Fe representing the perfect materials for mineral carbonation.


2007 ◽  
Vol 40 (2) ◽  
pp. 872
Author(s):  
N. Koukouzas ◽  
H. Ziock ◽  
F. Ziogou ◽  
I. Typou

The long-term storage of the greenhouse gas C02 generated by fossil fuel-fired power plants in the form of stable mineral carbonates appears to be a promising option for reducing global CO2 emissions. In the case of mineral carbonation captured gaseous CO2 is chemically stored in an exothermic reaction by the carbonation of magnesium or calcium silicate minerals, forming environmentally benign and thermodynamically stable products. The purpose of this paper is to give an overview of the carbon dioxide storage by mineral carbonation and to examine the feasibility of this sequestration option in the region of Western Macedonia. The main candidate minerals for carbonation and their sequestration capacity are presented. Furthermore, the most promising mineral carbonation process routes as well as the thermodynamics and kinetics of carbonation reaction are addressed, based on a review on the published literature. In Greece abundant magnesium-rich ultramafic rocks exist that probably could support the national CO2 emissions abatement policy. The attractiveness stems from the favourable geographical relationship between large stationary CO2 emission sources and potential magnesium silicate deposits. Thus, a roughly description of the olivine deposits and their quality in the region of Western Macedonia will be provided


2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Nabilah Zaini ◽  
Khairul Sozana Nor Kamarudin

Emission of carbon dioxide (CO2) becomes a major concern in combating issues of global warming. The strategy to reduce the concentration of CO2 could be achieved by executing carbon capture and storage (CCS) technology such as adsorption. This study presents the used of kenaf as a green source for CO2 adsorption material. The modification of MEA on kenaf is a novelty work to enhance the capacity of adsorbent since MEA has been proved to have potential in separating CO2 in industrial applications. In this work, 10 wt % of MEA has been impregnated on kenaf via wet impregnation method. The adsorption of CO2 study was conducted by passing CO2/N2 mixture in a ratio of 30:70 in a Pressure Swing Adsorption (PSA) system with a pressure up to 1.5 bar at ambient temperature. Result obtained via SEM analysis shows that the morphology of kenaf was affected after modification with MEA. However, the presence of MEA on kenaf has improved the CO2 adsorption capacity by 16 %. In addition, the adsorption equilibrium data for kenaf and MEA modified kenaf are well fitted in Freundlich isotherm model at low pressure and well fitted in Langmuir model at higher pressure. This study indicates that the introduction of MEA on kenaf could enhance the CO2 adsorption process.  


2015 ◽  
Vol 9 (7) ◽  
pp. 161
Author(s):  
David Licindo ◽  
Arinne Christin Paramudita ◽  
Renanto Handogo ◽  
Juwari Purwo Sutikno

Carbon capture and storage (CCS) is one of the technologies to reduce greenhouse gas emissions (GHG) tocapture of CO2 from the flue gas of a power plant that typically use coal as a Source of energy and then store it ina suitable geological storage (in specific locations). In practice, these sites may not be readily available forstorage at the same time that the Sources (GHG producing) are operating which gives rise to multi – periodplanning problems. This study presents a mathematical approach by considering constraints limit flowratereceived by Sink, various time availability of Sink and Source and calculation with the purpose to determine theminimum cost network which is getting the maximum load that is exchanged from Source to Sink. Illustrativecase studies are given to demonstrate the application of mathematical models to obtained with the exact result ofthe exchange network from Source to Sink. Derived from network obtained from the calculation of theMaximum Load Source to Sink and results may vary in accordance with the limitations that exist in themathematical model. The case study has been prepared with 2 cases, first 6 Source and 3 Sink with value ofSource Load is greater than the amount available on the Sink. Also, second case is 2 Source and 5 Sinkwithvalue of Source Load is smaller than the amount available on the Sink. In addition, Case Studies tominimize the cost of pipeline construction and distribution of CO2 by plant and storage location determination inJava. Flowrate restriction factor that goes into Sink, Source and Sink establishment time and cost are taken intoaccount can affect the networks that can be exchanged from the Source to the Sink.


2021 ◽  
Author(s):  
Alan Junji Yamaguchi ◽  
Kaito Kobayashi ◽  
Toru Sato ◽  
Takaomi Tobase

Abstract The global warming is an important environmental concern and the carbon capture and storage (CCS) emerges as a very promising technology. Captured carbon dioxide (CO2) can be stored onshore or offshore in the aquifers. There is, however, a risk that stored CO2 will leak due to natural disasters. One possible solution to this is the natural formation of CO2 hydrates. Gas hydrate has an ice-like structure in which small gas molecules are trapped within cages of water molecules. Hydrate formation occurs under high pressure and low temperature conditions. Its stability under these conditions acts like a cap rock to prevent CO2 leaks. The main objective of this study is to understand how hydrate formation affects the permeability of leaked CO2 flows. The phase field method was used to simulate microscopic hydrate growth within the pore space of sand grains, while the lattice Boltzmann method was used to simulate two-phase flow. The results showed that the hydrate morphology within the pore space changes with the flow, and the permeability is significantly reduced as compared with the case without the flow.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Huiru ◽  
You Zhanping ◽  
Mo Fan ◽  
Liu Bin ◽  
Han Peng

In the carbon capture and storage (CCS) infrastructure, the risk of a high-pressure buried pipeline rupture possibly leads to catastrophic accidents due to the release of tremendous amounts of carbon dioxide (CO2). Therefore, a comprehensive understanding of the effects of CO2 dispersion pattern after release from CCS facilities is essential to allow the appropriate safety precautions to be taken. Due to variations in topography above the pipeline, the pattern of CO2 dispersion tends to be affected by the real terrain features, such as trees and hills. However, in most previous studies, the dynamic impact of trees on the wind field was often approximated to linear treatment or even ignored. In this article, a computational fluid dynamics (CFD) model was proposed to predict CO2 dispersion over shrubbery areas. The shrubs were regarded as a kind of porous media, and the model was validated against the results from experiment. It was found that shrubbery affected the flow field near the ground, enhancing the lateral dispersion of CO2. Compared with that of the shrub-free terrain, the coverage area of the three shrub terrains at 60 s increased by 8.1 times, 6.7 times, and 9.1 times, respectively. The influence of shrub height and porosity on CO2 dispersion is nonlinear. This research provides reliable data for the risk assessment of CCS.


2013 ◽  
Vol 13 ◽  
pp. 78-86 ◽  
Author(s):  
Yolanda Sanchez-Vicente ◽  
Trevor C. Drage ◽  
Martyn Poliakoff ◽  
Jie Ke ◽  
Michael W. George

2014 ◽  
Vol 86 (24) ◽  
pp. 12191-12198 ◽  
Author(s):  
Robert van Geldern ◽  
Martin E. Nowak ◽  
Martin Zimmer ◽  
Alexandra Szizybalski ◽  
Anssi Myrttinen ◽  
...  

Author(s):  
Magali Roger ◽  
Thomas C. P. Reed ◽  
Frank Sargent

Escherichia coli is gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesises formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate in to H 2 and CO 2 . However, the enzyme has been observed to catalyse hydrogenation of CO 2 given the correct conditions, and so has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO 2 -reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H 2 and CO 2 during bacterial growth in a pressurised batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurised gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here we present out latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurised H 2 and CO 2 gases was established and aqueous formic acid was produced as a result. Incorporation of tungsten in to the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO 2 reductase (HDCR).


Sign in / Sign up

Export Citation Format

Share Document