scholarly journals Evidence for Stagnation of the Harvard Sublobe (Lake Michigan Lobe) in Northeastern Illinois, U.S.A., from 24 000 to 17 600 BP and Subsequent Tundra-Like Ice-Marginal Paleoenvironments from 17 600 to 15 700 BP

2006 ◽  
Vol 58 (2-3) ◽  
pp. 305-321 ◽  
Author(s):  
Brandon B. Curry ◽  
Catherine H. Yansa

Abstract Glacial deposits of the last glaciation associated with the Harvard sublobe (Lake Michigan lobe) in northeastern Illinois, U.S.A., occur between sediment with dateable organics. The lower organics include fragments of Picea sp. as young as 24 000 ± 270 BP. The supraglacial organics occur sparsely in laminated silt and fine sand in landforms that are positioned relatively high on the landscape, such as deposits from ice-walled lakes. These terrestrial organics yield ages that are 2500 to 1300 14C years older than organics at the base of sediment successions in nearby kettle basins. Basal 14C ages from four upland sites range from 17 610 ± 270 to 16 120 ± 80 BP. Our revised time-distance diagram of the Harvard sublobe now reflects a period of stagnation from 24 000 to about 17 600 BP. The supraglacial lacustrine silt yielded plant macrofossil assemblages of primarily tundra plants, including Salix herbacea and Dryas integrifolia. These plants likely grew in supraglacial and ice-marginal environments. The ostracode fauna include Cytherissa lacustris and Limnocythere friabilis. Geomorphic relations and ostracode ecology indicate that more than 17 m of ice buttressed some of the supraglacial lakes.

2006 ◽  
Vol 65 (1) ◽  
pp. 108-122 ◽  
Author(s):  
B. Brandon Curry ◽  
David A. Grimley

AbstractValleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite–Cu–Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite–dolomite–Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.


2016 ◽  
Author(s):  
Brandon Curry ◽  
◽  
Henry M. Loope ◽  
Thomas V. Lowell ◽  
Hong Wang ◽  
...  

1996 ◽  
Vol 46 (1) ◽  
pp. 19-26 ◽  
Author(s):  
B. Brandon Curry ◽  
Milan J. Pavich

A10Be inventory and14C ages of material from a core from northernmost Illinois support previous interpretations that this area was ice free from ca. 155,000 to 25,000 yr ago. During much of this period, from about 155,000 to 55,000 yr ago, 10Be accumulated in the argillic horizon of the Sangamon Geosol. Wisconsinan loess, containing inherited 10Be, was deposited above the Sangamon Geosol from ca. 55,000 to 25,000 yr ago and was subsequently buried by late Wisconsinan till deposited by the Lake Michigan Lobe of the Laurentide Ice Sheet. The Sangamonian interglacial stage has been correlated narrowly to marine oxygen isotope substage 5e; our data indicate instead that the Sangamon Geosol developed during late stage 6, all of stages 5 and 4, and early stage 3.


1993 ◽  
Vol 39 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Alan E. Kehew

AbstractGeomorphic and sedimentologic evidence in the Grand Valley, which drained the retreating Saginaw Lobe of the Laurentide Ice Sheet and later acted as a spillway between lakes in the Huron and Erie basins and in the Michigan basin, suggests that at least one drainage event from glacial Lake Saginaw to glacial Lake Chicago was a catastrophic outburst that deeply incised the valley. Analysis of shoreline and outlet geomorphology at the Chicago outlet supports J H Bretz's hypothesis of episodic incision and lake-level change. Shoreline features of each lake level converge to separate outlet sills that decrease in elevation from the oldest to youngest lake phases. This evidence, coupled with the presence of boulder lags and other features consistent with outburst origin, suggests that the outlets were deepened by catastrophic outbursts at least twice. The first incision event is correlated with a linked series of floods that progressed from Huron and Erie basin lakes to glacial Lake Saginaw to glacial Lake Chicago and then to the Mississippi. The second downcutting event occurred after the Two Rivers Advance of the Lake Michigan Lobe. Outbursts from the eastern outlets of glacial Lake Agassiz to glacial Lake Algonquin are a possible cause for this period of downcutting at the Chicago outlets.


Sign in / Sign up

Export Citation Format

Share Document