scholarly journals Mitigation of Scour Failure Risk of a River Bridge Located in an Ungauged Basin

2021 ◽  
Vol 16 (1) ◽  
pp. 37-56
Author(s):  
Hüseyin Akay

In this study, scour failure risk of the Çatalzeytin Bridge located in the Western Black Sea Basin, Turkey, was assessed for possible future flood events and appropriate scour countermeasures were considered based on economic and constructability considerations. Waterway adequacy in the spans of the bridge and scour criticality around bridge foundations considered for risk calculations in HYRISK were estimated by hydrological and hydraulic analyses of the watershed and stream. Since the watershed of the bridge is ungauged, geomorphological instantaneous unit hydrograph concept was adopted to estimate the peak discharges with various return periods to be used in hydraulic modelling. Monte Carlo simulation results indicated that most of the simulated peak discharges were in the 95% confidence interval. Hydraulic model results from HECRAS indicated that waterway adequacy and scour criticality were critical for discharges with 200 and 500-year return periods. Scour failure risk of the Çatalzeytin Bridge was classified as high and it was proposed to reduce the risk by constructing partially grouted riprap as the most feasible alternative that would consequently increase the expected lifespan of the bridge. Following this methodology, river bridges may be prioritized based on the risk analysis.

2013 ◽  
Vol 18 (9) ◽  
pp. 13-20 ◽  
Author(s):  
Andrzej Wałęga

Abstract The paper presents an assessment of the applicability of HEC-HMS programme to simulate a precipitation flood event in an ungauged basin. The programme has been developed by the Department of the Army Corps of Engineers and enables conducting hydrological calculations for basins with different characteristics and including a number of meteorological factors. The application of this model in Polish conditions was verified in the basin of the Stobnica River - a right tributary of the Wisłok River. The calculations were carried out for the flood event caused by a continuous rain, which occurred in April 1998. Four hydrological models were compared: geomorpho-climatic instantaneous unit hydrograph by Nash - GcIUH_Nash, Snyder's synthetic unit hydrograph with the determination of parameters by regression models - Snyder_reg and standard method - Snyder_ stand and Clark's instantaneous unit hydrograph - IUH_Clark, where the model parameters were optimized in the programme. The calculations revealed that the best simulation results were obtained with the Snyder_stand and Snyder_reg models. Further research should be directed to verifying the applicability of HEC- -HMS programme for hydrological analyses of much more extensive hydrometric material and basins with different characteristics.


2015 ◽  
Vol 48 (2) ◽  
pp. 91-103
Author(s):  
Joo-Cheol Kim ◽  
◽  
Kwansue Jung ◽  
Dong Kug Jeong

1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3122
Author(s):  
Leonardo Primavera ◽  
Emilia Florio

The possibility to create a flood wave in a river network depends on the geometric properties of the river basin. Among the models that try to forecast the Instantaneous Unit Hydrograph (IUH) of rainfall precipitation, the so-called Multifractal Instantaneous Unit Hydrograph (MIUH) by De Bartolo et al. (2003) rather successfully connects the multifractal properties of the river basin to the observed IUH. Such properties can be assessed through different types of analysis (fixed-size algorithm, correlation integral, fixed-mass algorithm, sandbox algorithm, and so on). The fixed-mass algorithm is the one that produces the most precise estimate of the properties of the multifractal spectrum that are relevant for the MIUH model. However, a disadvantage of this method is that it requires very long computational times to produce the best possible results. In a previous work, we proposed a parallel version of the fixed-mass algorithm, which drastically reduced the computational times almost proportionally to the number of Central Processing Unit (CPU) cores available on the computational machine by using the Message Passing Interface (MPI), which is a standard for distributed memory clusters. In the present work, we further improved the code in order to include the use of the Open Multi-Processing (OpenMP) paradigm to facilitate the execution and improve the computational speed-up on single processor, multi-core workstations, which are much more common than multi-node clusters. Moreover, the assessment of the multifractal spectrum has also been improved through a direct computation method. Currently, to the best of our knowledge, this code represents the state-of-the-art for a fast evaluation of the multifractal properties of a river basin, and it opens up a new scenario for an effective flood forecast in reasonable computational times.


2005 ◽  
Vol 5 (3) ◽  
pp. 455-458 ◽  
Author(s):  
M.E. Noorbakhsh ◽  
M.B. Rahnama ◽  
S. Montazeri

Sign in / Sign up

Export Citation Format

Share Document