peak discharges
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 1)

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 150
Author(s):  
Andrea Gioia ◽  
Beatrice Lioi ◽  
Vincenzo Totaro ◽  
Matteo Gianluca Molfetta ◽  
Ciro Apollonio ◽  
...  

One of the main signatures of short duration storms is given by Depth–Duration–Frequency (DDF) curves. In order to provide reliable estimates for small river basins or urban catchments, generally characterized by short concentration times, in this study the performances of different DDF curves proposed in literature are described and compared, in order to provide insights on the selection of the best approach in design practice, with particular reference to short durations. With this aim, 28 monitoring stations with time series of annual maximum rainfall depth characterized by sample size greater than 20 were selected in the Northern part of the Puglia region (South-Eastern Italy). In order to test the effect of the investigated DDF curves in reproducing the design peak discharge corresponding to an observed expected rainfall event, the Soil Conservation (SCS) curve number (CN) approach is exploited, generating peak discharges according to different selected combinations of the main parameters that control the critical rainfall duration. Results confirm the good reliability of the DDF curves with three parameters to adapt on short events both in terms of rainfall depth and in terms of peak discharge and, in particular, for durations up to 30 min, the three-parameter DDF curves always perform better than the two-parameter DDF.


2021 ◽  

<p>Aim of the study is to examine the potential utilization of satellite precipitation data to estimate the peak discharges of flash floods in ungauged Mediterranean watersheds. Cumulative precipitation heights from local rain gauge and the GPM-IMERG were correlated in a scatter plot. The calculated linear equations were used to adjust the uncalibrated GPM-IMERG precipitation data in Thasos island (Northern Greece), to investigate the mechanisms of the flash floods recorded in November 2019 and to evaluate the significance of satellite precipitation data in hydrological modeling. The uncalibrated GPM-IMERG precipitation failed to explain the flash floods phenomena. The rain gauge data are reliable to accurately predict the peak discharges only in cases, where the rain gauges are within the study area. The strong correlation between ground rainfall data and satellite spatiotemporal precipitation data (R2 &gt; 0.65), provides linear regression equations that, through their extrapolation and appliance to the rest of the flooded area, could adjust and correct the satellite data, optimizing the efficiency and accuracy of flash flood analysis, especially in ungauged watersheds. The proposed methodology could highly contribute to the optimization of flood mitigation measures establishment, flood risk assessment, hydrological and hydraulic simulation of flash flood events in ungauged watersheds.</p>


Author(s):  
Nergui Nanding ◽  
Huan Wu ◽  
Jing Tao ◽  
Viviana Maggioni ◽  
Hylke E. Beck ◽  
...  

AbstractThis study characterizes precipitation error propagation through a distributed hydrological model based on the river basins across the Contiguous United States (CONUS), to better understand the relationship between errors in precipitation inputs and simulated discharge (i.e., P-Q error relationship). The NLDAS-2 precipitation and its simulated discharge are used as the reference to compare with TMPA-3B42 V7, TMPA-3B42RT V7, StageIV, CPC-U, MERRA-2, and MSWEP-2.2 for 1,548 well gauged river basins. The relative errors in multiple conventional precipitation products and their corresponding discharges are analysed for the period of 2002-2013. The results reveal positive linear P-Q error relationships at annual and monthly timescales, and the stronger linearity for larger temporal accumulations. Precipitation errors can be doubled in simulated annual accumulated discharge. Moreover, precipitation errors are strongly dampened in basins characterized by temperate and continental climate regimes, particularly for peak discharges, showing highly nonlinear relationships. Radar-based precipitation product consistently shows dampening effects on error propagation through discharge simulations at different accumulation timescales compared to the other precipitation products. Although basin size and topography also influence the P-Q error relationship and propagation of precipitation errors, their roles depend largely on precipitation products, seasons and climate regimes.


2021 ◽  
Vol 16 (1) ◽  
pp. 37-56
Author(s):  
Hüseyin Akay

In this study, scour failure risk of the Çatalzeytin Bridge located in the Western Black Sea Basin, Turkey, was assessed for possible future flood events and appropriate scour countermeasures were considered based on economic and constructability considerations. Waterway adequacy in the spans of the bridge and scour criticality around bridge foundations considered for risk calculations in HYRISK were estimated by hydrological and hydraulic analyses of the watershed and stream. Since the watershed of the bridge is ungauged, geomorphological instantaneous unit hydrograph concept was adopted to estimate the peak discharges with various return periods to be used in hydraulic modelling. Monte Carlo simulation results indicated that most of the simulated peak discharges were in the 95% confidence interval. Hydraulic model results from HECRAS indicated that waterway adequacy and scour criticality were critical for discharges with 200 and 500-year return periods. Scour failure risk of the Çatalzeytin Bridge was classified as high and it was proposed to reduce the risk by constructing partially grouted riprap as the most feasible alternative that would consequently increase the expected lifespan of the bridge. Following this methodology, river bridges may be prioritized based on the risk analysis.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 792
Author(s):  
Marco Lompi ◽  
Luis Mediero ◽  
Enrica Caporali

Understanding how the design hyetographs and floods will change in the future is essential for decision making in flood management plans. This study provides a methodology to quantify the expected changes in future hydraulic risks at the catchment scale in the city of Pamplona. It considers climate change projections supplied by 12 climate models, 7 return periods, 2 emission scenarios (representative concentration pathway RCP 4.5 and RCP 8.5), and 3 time windows (2011–2040, 2041–2070, and 2070–2100). The Real-time Interactive Basin Simulator (RIBS) distributed hydrological model is used to simulate rainfall-runoff processes at the catchment scale. The results point to a decrease in design peak discharges for return periods smaller than 10 years and an increase for the 500- and 1000-year floods for both RCPs in the three time windows. The emission scenario RCP 8.5 usually provides the greatest increases in flood quantiles. The increase of design peak discharges is almost 10–30% higher in RCP 8.5 than in RCP 4.5. Change magnitudes for the most extreme events seem to be related to the greenhouse gas emission predictions in each RCP, as the greatest expected changes are found in 2040 for the RCP 4.5 and in 2100 for the RCP 8.5.


2021 ◽  
Vol 331 ◽  
pp. 08006
Author(s):  
Arniza Fitri ◽  
Muhammad Shubhi Nurul Hadie ◽  
Adelia Agustina ◽  
Dian Pratiwi ◽  
Susarman ◽  
...  

Cimadur river basin is one of the most important catchment areas in Lebak District, Banten Province. For the past few years, the catchment has experienced floods during the rainy season. The big issue of flooding has been recorded recently in December 2019 which has caused damage and negative impacts to the local people and surrounding community. This study aims to analyze the possibility of flood peak discharges in the catchment area of the Cimadur river. The flood discharges are calculated for 2, 5, 10, 25, 50, and 100 years return period based on the daily rainfall data from the year 2011 to 2020. The rainfall and land use data are obtained from PT Saeba Consultant. In this study, the hydrological analyses are including 1) analyses of average annual rainfall using the Thiessen method; 2) analyses of rainfall distribution and estimation of design rainfall by considering three methods involving: Log-Normal, Log Pearson Type III, and Gumbel Type 1; and 3) analyses of flood discharges by adopting Nakayasu Synthetic Hydrograph Unit (SHU). The rainfall distribution analyses show that the Log Pearson Type III provided the best fit. Based on the flood peak discharges analyses, the results show that the flood discharges for the 5, 10, 25, and 50 years return period in the Cimadur river basin are 470.71 m3/s, 560.16 m3/s, 698 m3/s, and 820.4 m3/s, respectively.


2020 ◽  
Vol 163 (4) ◽  
pp. 2135-2151
Author(s):  
Ekaterina P. Rets ◽  
Ivan N. Durmanov ◽  
Maria B. Kireeva ◽  
Andrew M. Smirnov ◽  
Viktor V. Popovnin

Sign in / Sign up

Export Citation Format

Share Document