scholarly journals Peer Review #1 of "Stress responses to conspecific visual cues of predation risk in zebrafish (v0.3)"

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3739 ◽  
Author(s):  
Thiago Acosta Oliveira ◽  
Renan Idalencio ◽  
Fabiana Kalichak ◽  
João Gabriel dos Santos Rosa ◽  
Gessi Koakoski ◽  
...  

Chemical communication relating to predation risk is a trait common among fish species. Prey fish under threat of predation can signal risk to conspecific fish, which then exhibit defensive responses. Fish also assess predation risk by visual cues and change their behavior accordingly. Here, we explored whether these behavioral changes act as visual alarm signals to conspecific fish that are not initially under risk. We show that shoals of zebrafish (Danio rerio) visually exposed to a predator display antipredator behaviors. In addition, these defensive maneuvers trigger antipredator reactions in conspecifics and, concomitantly, stimulate the hypothalamus-pituitary-interrenal axis, leading to cortisol increase. Thus, we conclude that zebrafish defensive behaviors act as visual alarm cues that induce antipredator and stress response in conspecific fish.


2012 ◽  
Vol 90 (7) ◽  
pp. 893-902 ◽  
Author(s):  
N.A. Haislip ◽  
J.T. Hoverman ◽  
D.L. Miller ◽  
M.J. Gray

Emerging infectious diseases have been identified as threats to biodiversity, yet our understanding of the factors contributing to host susceptibility to pathogens within natural populations remains limited. It has been proposed that species interactions within communities affect host susceptibility to pathogens, thereby contributing to disease emergence. In particular, predation risk is a common natural stressor that has been hypothesized to compromise immune function of prey through chronic stress responses possibly leading to increased susceptibility to pathogens. We examined whether predation risk experienced during the development of four larval anuran species increases susceptibility (mortality and infection) to ranaviruses, a group of viruses responsible for amphibian die-offs. Using controlled laboratory experiments, we exposed each species to a factorial combination of two virus treatments (no virus or virus) crossed with three predator-cue treatments (no predators, larval dragonflies, or adult water bugs). All four amphibian species reduced activity by 22%–48% following continuous exposure to predator cues. In addition, virus exposure significantly reduced survival by 17%–100% across all species. However, exposure to predator cues did not interact with the virus treatments to elevate mortality or viral load. Our results suggest that the expression of predator-induced plasticity in anuran larvae does not increase ranaviral disease risk.


Sign in / Sign up

Export Citation Format

Share Document