scholarly journals Peer Review #2 of "High resolution crystal structures of the receptor-binding domain of Clostridium botulinum neurotoxin serotypes A and FA (v0.1)"

Biochimie ◽  
2013 ◽  
Vol 95 (7) ◽  
pp. 1379-1385 ◽  
Author(s):  
Yanfeng Zhang ◽  
Anna S. Gardberg ◽  
Thomas E. Edwards ◽  
Banumathi Sankaran ◽  
Howard Robinson ◽  
...  

Antibodies ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Xiaoyan Zeng ◽  
Fiona Legge ◽  
Chao Huang ◽  
Xiao Zhang ◽  
Yongjun Jiao ◽  
...  

In this work, we have used a new method to predict the epitopes of HA1 protein of influenza virus to several antibodies HC19, CR9114, BH151 and 4F5. While our results reproduced the binding epitopes of H3N2 or H5N1 for the neutralizing antibodies HC19, CR9114, and BH151 as revealed from the available crystal structures, additional epitopes for these antibodies were also suggested. Moreover, the predicted epitopes of H5N1 HA1 for the newly developed antibody 4F5 are located at the receptor binding domain, while previous study identified a region 76-WLLGNP-81 as the epitope. The possibility of antibody recognition of influenza virus via different mechanism by binding to different epitopes of an antigen is also discussed.


2008 ◽  
Vol 4 (12) ◽  
pp. e1000245 ◽  
Author(s):  
Audrey Fischer ◽  
Darren J. Mushrush ◽  
D. Borden Lacy ◽  
Mauricio Montal

2021 ◽  
Author(s):  
Yuko Nitahara ◽  
Yu Nakagama ◽  
Natsuko Kaku ◽  
Katherine Candray ◽  
Yu Michimuko ◽  
...  

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine facilitated population immunity, which shall become more dominant than natural infection-induced immunity. At the beginning of the vaccine era, the initial epitope profile in naive individuals will be the first step to build an optimal host defense system towards vaccine-based population immunity. In this study, the high-resolution linear epitope profiles between Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the RBD than that induced by the natural infection. The relatively lower neutralizing antibody titers observed in vaccine-induced sera could attribute to less efficient epitope selection and maturation of the vaccine-induced humoral immunity compared to the infection-induced. Furthermore, additional mutation panel assays showed that the vaccine-induced rich epitope variety targeting the RBD may aid antibodies to escape rapid viral evolution, which could grant an advantage to the vaccine immunity.


Biochemistry ◽  
2001 ◽  
Vol 40 (51) ◽  
pp. 15520-15527 ◽  
Author(s):  
Joseph C. McNulty ◽  
Darren A. Thompson ◽  
Kimberly A. Bolin ◽  
Jill Wilken ◽  
Gregory S. Barsh ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4552 ◽  
Author(s):  
Jonathan R. Davies ◽  
Gavin S. Hackett ◽  
Sai Man Liu ◽  
K. Ravi Acharya

The binding specificity of botulinum neurotoxins (BoNTs) is primarily a consequence of their ability to bind to multiple receptors at the same time. BoNTs consist of three distinct domains, a metalloprotease light chain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Here we report the crystal structure of HC/FA, complementing an existing structure through the modelling of a previously unresolved loop which is important for receptor-binding. Our HC/FA structure also contains a previously unidentified disulphide bond, which we have also observed in one of two crystal forms of HC/A1. This may have implications for receptor-binding and future recombinant toxin production.


Sign in / Sign up

Export Citation Format

Share Document