melanocortin receptor
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 71)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 75-88
Author(s):  
Amber N. Edinoff ◽  
Nicole M. Sanders ◽  
Kyle B. Lewis ◽  
Tucker L. Apgar ◽  
Elyse M. Cornett ◽  
...  

Hypoactive sexual desire disorder (HSDD) is a persistent deficiency or absence of sexual fantasies and desire resulting in significant distress or interpersonal difficulty. Women with this disorder may display a lack of motivation for sexual activity, reduced responsiveness to erotic cues, a loss of interest during sexual activity, and avoidance of situations that could lead to sexual activity. The pathophysiology of HSDD is thought to be centered around inhibitory and excitatory hormones, neurotransmitters, and specific brain anatomy. Due to the multifactorial nature of HSDD, treatment can be complex and must attempt to target the biological and psychosocial aspects of the disorder. Bremelanotide is a melanocortin receptor agonist and has been recently approved by the FDA to treat HSDD. Bremelanotide is administered intranasally or as a subcutaneous injection. The recommended dosage of bremelanotide is 1.75 mg injected subcutaneously in the abdomen or thigh at least 45 min before sexual activity. Studies showed improvements in desire, arousal, and orgasm scores when 1.75 mg of bremelanotide was administered before sexual activity compared to a placebo. Bremelanotide is a promising way to treat HSDD.


2022 ◽  
Author(s):  
Luis E. Gimenez ◽  
Terry A. Noblin ◽  
Savannah Y Williams ◽  
Satarupa Mullick Bagchi ◽  
Ren-Lei Ji ◽  
...  

Melanocortin peptides containing a D-naphthylalanine residue in position 7 (DNal(2')7), reported as melanocortin-3 receptor (MC3R) subtype-specific agonists in two separate publications, were found to lack significant MC3R agonist activity. The cell lines used at the University of Arizona for pharmacological characterization of these peptides, consisting of HEK293 cells stably transfected with human melanocortin receptor subtypes MC1R, MC3R, MC4R, or MC5R, were then obtained and characterized by quantitative PCR. While the MC1R cell line correctly expressed only the hMCR1, the three other cell lines were mischaracterized with regard to receptor subtype expression. Demonstration that a D-naphthylalanine residue in position 7, irrespective of the melanocortin peptide template, results primarily in antagonism of the MC3R and MC4R, then allowed us to search the published literature for additional errors. The erroneously characterized DNal(2')7-containing peptides date back to 2003; thus, our analysis suggests that systematic mischaracterization of the pharmacological properties of melanocortin peptides occurred.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Brugaletta ◽  
Elizabeth Greene ◽  
Travis Tabler ◽  
Sara Orlowski ◽  
Federico Sirri ◽  
...  

Heat stress (HS) has been increasingly jeopardizing the sustainability of the poultry production. Moreover, modern high-performing chickens are far less able to withstand HS than their predecessors due to higher growth rate and metabolic rates. Performance losses caused by HS are mainly ascribed to decreases in feed consumption. Since feed intake is tightly controlled by the hypothalamic centers of hunger and satiety, we sought to determine the effect of chronic cyclic HS on the expression of feeding-related hypothalamic neuropeptides (FRHN) in unselected chickens (i.e., the ancestor junglefowl—JF) and three broiler lines from diverse stages of genetic selection (i.e., the slow growing ACRB, the moderate growing 95RN, and the fast growing MRB). From 29 to 56 days, birds (n = 150 birds for each population) were subjected to either thermoneutral (TN, 25°C) or cyclic heat stress (HS, 36°C, 0900–1,800 h) conditions. Molecular data were analyzed by two-way ANOVA with interaction between the main factors, namely environmental temperature and line. The expression of major FHRN, like neuropeptide Y, agouti-related peptide, proopiomelanocortin, and cocaine and amphetamine regulated transcript remained unchanged. However, melanocortin receptor 1 exhibited a line-dependent decreasing trend from JF to MRB under both TN and HS (p = 0.09), adiponectin expression showed a distinct trend toward significance with 95RB exhibiting the highest mRNA level irrespective of the environmental temperature (p = 0.08), and JF had a greater mRNA abundance of visfatin than ACRB under TN (p < 0.05). The hypothalamic integration of circadian information, acclimation to long-lasting HS exposure, stable hypothalamic pathways unaffected by evolution and genetic selection, focus on mRNA abundances, and use of the entire hypothalamus masking gene expression in specific hypothalamic nuclei are all possible explanations for the lack of variations observed in this study. In conclusion, this is the first assessment of the impacts of heat stress on feeding-related hypothalamic neuropeptides of chicken, with a valuable and informative comparison between the ancestor junglefowl and three differently performing broiler lines.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7648
Author(s):  
Hyoung Moon Kim ◽  
Seyeon Oh ◽  
Chang Hu Choi ◽  
Jin Young Yang ◽  
Sunggeun Kim ◽  
...  

Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3440
Author(s):  
Elena Makarova ◽  
Antonina Kazantseva ◽  
Anastasia Dubinina ◽  
Elena Denisova ◽  
Tatiana Jakovleva ◽  
...  

FGF21 is a promising candidate for treating obesity, diabetes, and NAFLD; however, some of its pharmacological effects are sex-specific in mice with the Ay mutation that evokes melanocortin receptor 4 blockade, obesity, and hepatosteatosis. This suggests that the ability of FGF21 to correct melanocortin obesity may depend on sex. This study compares FGF21 action on food intake, locomotor activity, gene expression, metabolic characteristics, and liver state in obese Ay males and females. Ay mice were administered FGF21 for seven days, and metabolic parameters and gene expression in different tissues were assessed. Placebo-treated females were more obese than males and had lower levels of blood insulin and liver triglycerides, and higher expression of genes for insulin signaling in the liver, white adipose tissue (WAT) and muscles, and pro-inflammatory cytokines in the liver. FGF21 administration did not affect body weight, and increased food intake, locomotor activity, expression of Fgf21 and Ucp1 in brown fat and genes related to lipolysis and insulin action in WAT regardless of sex; however, it decreased hyperinsulinemia and hepatic lipid accumulation and increased muscle expression of Cpt1 and Irs1 only in males. Thus, FGF21’s beneficial effects on metabolic disorders associated with melanocortin obesity are more pronounced in males.


2021 ◽  
Vol 12 ◽  
Author(s):  
James J. Kadiri ◽  
Sina Tadayon ◽  
Keshav Thapa ◽  
Anni Suominen ◽  
Maija Hollmén ◽  
...  

Melanocortin receptor 1 (MC1-R) is expressed in leukocytes, where it mediates anti-inflammatory actions. We have previously observed that global deficiency of MC1-R signaling perturbs cholesterol homeostasis, increases arterial leukocyte accumulation and accelerates atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. Since various cell types besides leukocytes express MC1-R, we aimed at investigating the specific contribution of leukocyte MC1-R to the development of atherosclerosis. For this purpose, male Apoe-/- mice were irradiated, received bone marrow from either female Apoe-/- mice or MC1-R deficient Apoe-/- mice (Apoe-/- Mc1re/e) and were analyzed for tissue leukocyte profiles and atherosclerotic plaque phenotype. Hematopoietic MC1-R deficiency significantly elevated total leukocyte counts in the blood, bone marrow and spleen, an effect that was amplified by feeding mice a cholesterol-rich diet. The increased leukocyte counts were largely attributable to expanded lymphocyte populations, particularly CD4+ T cells. Furthermore, the number of monocytes was elevated in Apoe-/- Mc1re/e chimeric mice and it paralleled an increase in hematopoietic stem cell count in the bone marrow. Despite robust leukocytosis, atherosclerotic plaque size and composition as well as arterial leukocyte counts were unaffected by MC1-R deficiency. To address this discrepancy, we performed an in vivo homing assay and found that MC1-R deficient CD4+ T cells and monocytes were preferentially entering the spleen rather than homing in peri-aortic lymph nodes. This was mechanistically associated with compromised chemokine receptor 5 (CCR5)-dependent migration of CD4+ T cells and a defect in the recycling capacity of CCR5. Finally, our data demonstrate for the first time that CD4+ T cells also express MC1-R. In conclusion, MC1-R regulates hematopoietic stem cell proliferation and tissue leukocyte counts but its deficiency in leukocytes impairs cell migration via a CCR5-dependent mechanism.


2021 ◽  
Author(s):  
Jineta Banerjee ◽  
Mauricio D. Dorfman ◽  
Rachael Fasnacht ◽  
John D. Douglass ◽  
Alice C. Wyse-Jackson ◽  
...  

Objective: Diet-induced obesity (DIO) is associated with hypothalamic microglial activation and dysfunction of the melanocortin pathway, but the molecular mechanisms linking the two remain unclear. Previous studies have hypothesized that microglial inflammatory signaling is linked with impaired pro-opiomelanocortin (POMC) neuron function, but this mechanism has never been directly tested in vivo. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling in the brain to protect against DIO. Methods: We performed metabolic analyses in mice with targeted viral overexpression of CX3CL1 in the hypothalamus exposed to high fat diet (HFD). Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU-9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Results: We found that targeted expression of both soluble and membrane-bound forms of CX3CL1 in the mediobasal hypothalamus potently reduced weight gain and increased leptin sensitivity in animals exposed to high fat diet. The protective effect of CX3CL1 rescued diet-induced changes in POMC neuron excitability and required intact melanocortin receptor signaling in vivo. Conclusion: Our results provide the first evidence that HFD-induced POMC neuron dysfunction involves microglial activation. Furthermore, our study suggests that the anti-obesity action of CX3CL1 is mediated through the restoration of POMC neuron excitability and melanocortin signaling.


2021 ◽  
Author(s):  
Meng Wang ◽  
Yue Zhai ◽  
Xiaowei Lei ◽  
Jing Xu ◽  
Bopei Jiang ◽  
...  

Abstract Background: Melanin concentrating hormone (MCH), an orexigenic neuropeptide, is primarily secreted by the hypothalamus and acts at its receptor, the melanin-concentrating hormone receptor 1 (MCHR1), to regulate energy homeostasis and body weight. The Melanocortin Receptor Accessory Protein 2 (MRAP2), a small single transmembrane protein broadly expressed in multiple tissues, has been defined as a vital endocrine pivot of five melanocortin receptors (MC1R-MC5R) and several other GPCRs in the regulation of central neuronal appetite and peripheral energy homeostasis. However, the regulatory and relationship between MCHR1 and MRAP2 is unknown.Results: In this study, we show that MRAP2 interacts with MCHR1 and suppresses MCHR1 signaling in vitro. We also identified the C-terminal domains of MRAP2 protein required for pharmacological modulation of intracellular Ca2+ cascades and membrane transport. Conclusions: These findings elucidated the broad regulatory profile of MRAP2 protein in the central nervous system and may provide implications for the modulation of central MCHR1 function in vivo.


2021 ◽  
Author(s):  
Ying Xu ◽  
Lei Li ◽  
Jihong Zheng ◽  
Meng Wang ◽  
Bopei Jiang ◽  
...  

As a member of the seven-transmembrane rhodopsin-like G protein-coupled receptor superfamily, the melanocortin-3 receptor is vital for the regulation of energy homeostasis and rhythms synchronizing in mammals and its pharmacological effect could be directly influenced by the presence of melanocortin accessory proteins, MRAP1 and MRAP2. The tetrapod amphibian Xenopus laevis (xl) retains higher duplicated genome than extant teleosts and serves as an ideal model system for embryonic development and physiological studies. However, the melanocortin system of the Xenopus laevis has not been thoroughly evaluated yet. In this work, we performed sequence alignment, phylogenetic and synteny analysis of two xlMC3Rs. Co-immunoprecipitation and immunofluorescence assay further confirmed the co-localization and in vitro interaction of xlMC3Rs with xlMRAPs on the plasma membrane. Our results demonstrated that xlMRAP2.L/S could improve α-MSH stimulated xlMC3Rs signaling and suppress their surface expression. Moreover, xlMC3R.L showed a similar profile on the ligands and surface expression in the presence of xlMRAP1.L. Overall, the distinct pharmacological modulation of xlMC3R.L and xlMC3R.S by dual MRAP2 proteins elucidated the functional consistency of melanocortin system during genomic duplication of tetrapod vertebrates.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-15
Author(s):  
Izabela Szpręgiel ◽  
Danuta Wronska

<b>Domestic hen is a full model in terms of stress and adrenal function. The main hormone produced by the hens’ adrenals is corticosterone, synthesized and secreted by stimulating the HPA axis during stress. Direct activation of adrenal activity is conditioned by ACTH, which binds to the melanocortin receptor cMC2 in adrenals. It stimulates the synthesis and release of corticosterone. One of the factors that stimulate the HPA axis activity is the starvation, to which the hen is very sensitive. The purpose of this study was to determine the ACTH receptor cMC2 expression in the hens’ adrenals during the short-term fasting and after restoring the proper level of nutrition (refeeding). The results of the experiment show that 24-hour of food deprivation is stressful for the hen, as indicated by increased concentrations of corticosterone in the adrenals and in blood plasma. Changes in cMC2R expression and level of corticosterone in the adrenals during fasting and refeeding indicate a rapid increase of HPA axis activity in response to differentiated levels of nutrition. The results of this experiment confirm the direct effect of ACTH on the avian adrenals in corticosterone release.


Sign in / Sign up

Export Citation Format

Share Document