Peer Review #2 of "A close relative of the Amazon river dolphin in marine deposits: a new Iniidae from the late Miocene of Angola (v0.1)"

Author(s):  
CS Gutstein
PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5556 ◽  
Author(s):  
Olivier Lambert ◽  
Camille Auclair ◽  
Cirilo Cauxeiro ◽  
Michel Lopez ◽  
Sylvain Adnet

Background A few odontocetes (echolocating toothed cetaceans) have been able to independently colonize freshwater ecosystems. Although some extant species of delphinids (true dolphins) and phocoenids (porpoises) at least occasionally migrate upstream of large river systems, they have close relatives in fully marine regions. This contrasts with the three odontocete families only containing extant species with a strictly freshwater habitat (Iniidae in South America, the recently extinct Lipotidae in China, and Platanistidae in southeast Asia). Among those, the fossil record of Iniidae includes taxa from freshwater deposits of South America, partly overlapping geographically with the extant Amazon river dolphin Inia geoffrensis, whereas a few marine species from the Americas were only tentatively referred to the family, leaving the transition from a marine to freshwater environment poorly understood. Methods Based on a partial odontocete skeleton including the cranium, discovered in late Miocene (Tortonian-Messinian) marine deposits near the estuary of the Cuanza River, Angola, we describe a new large iniid genus and species. The new taxon is compared to other extinct and extant iniids, and its phylogenetic relationships with the latter are investigated through cladistic analysis. Results and Discussion The new genus and species Kwanzacetus khoisani shares a series of morphological features with Inia geoffrensis, including the combination of a frontal boss with nasals being lower on the anterior wall of the vertex, the laterally directed postorbital process of the frontal, the anteroposterior thickening of the nuchal crest, and robust teeth with wrinkled enamel. As confirmed (although with a low support) with the phylogenetic analysis, this makes the new taxon the closest relative of I. geoffrensis found in marine deposits. The geographic provenance of K. khoisani, on the eastern coast of South Atlantic, suggests that the transition from the marine environment to a freshwater, Amazonian habitat may have occurred on the Atlantic side of South America. This new record further increases the inioid diversity during the late Miocene, a time interval confirmed here as the heyday for this superfamily. Finally, this first description of a Neogene cetacean from inland deposits of western sub-Saharan Africa reveals the potential of this large coastal area for deciphering key steps of the evolutionary history of modern cetaceans in the South Atlantic.


2012 ◽  
Vol 5 ◽  
Author(s):  
Gabriel M.A. Dos Santos ◽  
Adriano C. Quaresma ◽  
Rafael R. Barata ◽  
Bruna M.L. Martins ◽  
Salvatore Siciliano ◽  
...  

Author(s):  
Apolline ALFSEN ◽  
Mark BOSSELAERS ◽  
Olivier LAMBERT

In spite of a continuously expanding physeteroid fossil record, our understanding of the origin and early radiation of the two modern sperm whale families Kogiidae Gill, 1871 (including the pygmy and dwarf sperm whales, Kogia spp.) and Physeteridae Gray, 1821 (including the great sperm whale, Physeter Linnaeus, 1758) remains limited, especially due to the poorly resolved phylogenetic relationships of a number of extinct species. Among those, based on fragmentary cranial material from the late early to middle Miocene of Antwerp (Belgium, North Sea basin), the small-sized Thalassocetus antwerpiensis Abel, 1905 has been recognized for some time as the earliest branching kogiid. The discovery of a new diminutive physeteroid cranium from the late Miocene (Tortonian) of Antwerp leads to the description and comparison of a close relative of T. antwerpiensis. Thanks to the relatively young ontogenetic stage of this new specimen, the highly modified plate-like bones making the floor of its supracranial basin could be individually removed, a fact that greatly helped deciphering their identity and geometry. Close morphological similarities with T. antwerpiensis allow for the reassessment of several facial structures in the latter; the most important reinterpretation is the one of a crest-like structure, previously identified as a sagittal facial crest, typical for kogiids, and here revised as the left posterolateral wall of the supracranial basin, comprised of the left nasal (lost in kogiids for which the postnarial region is known) and the left maxilla. Implemented in a phylogenetic analysis, the new anatomical interpretations result in the new Belgian specimen and T. antwerpiensis being recovered as sister-groups in the family Physeteridae. Consequently, the geologically oldest kogiids are now dated from the Tortonian, further extending the ghost lineage separating these early late Miocene kogiid records from the estimated latest Oligocene to earliest Miocene divergence of kogiids and physeterids.


Sign in / Sign up

Export Citation Format

Share Document