scholarly journals Peer Review #2 of "Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold (v0.1)"

Author(s):  
SU Rahman
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anggraini Barlian ◽  
Hermawan Judawisastra ◽  
Ahmad Ridwan ◽  
Antonia Ratih Wahyuni ◽  
Meidiana Ebtayani Lingga

Abstract In this research, hWJ-MSCs were grown on silk scaffolds and induced towards chondrogenesis by supplementation with L-ascorbic acid (LAA) or platelet rich plasma (PRP). Silk scaffolds were fabricated with salt leaching method by mixing silk fibroin (SF) with silk spidroin (SS). The silk fibroin was obtained from Bombyx mori cocoon that had been degummed, and the silk spidroin was obtained from wild-type spider Argiope appensa. The effect of scaffold composition and inducer on cell proliferation was observed through MTT assay. The most optimal treatment then continued to be used to induce hWJ-MSC towards chondrogenic differentiation for 7 and 21 days. Scaffolds characterization showed that the scaffolds produced had 3D structure with interconnected pores, and all were biocompatible with hWJ-MSCs. Scaffold with the addition of 10% SS + 90% SF showed higher compressive strength and better pore interconnectivity in comparison to 100% silk fibroin scaffold. After 48 h, cells seeded on scaffold with spidroin and fibroin mix had flattened morphology in comparison to silk fibroin scaffold which appeared to be more rounded on the scaffold surface. Scaffold with 10% (w/w) of silk spidroin (SS) + 90% (w/w) of silk fibroin (SF) was the most optimal composition for cell proliferation. Immunocytochemistry of integrin β1 and RGD sequence, showed that scaffold with SS 10% provide better cell attachment with the presence of RGD sequence from the spidroin silk which could explain the higher cell proliferation than SF100% scaffold. Based on Alcian Blue staining and Collagen Type II immunocytochemistry (ICC), cells grown on 10% SS + 90% SF scaffold with 10% PRP supplementation were the most optimal to support chondrogenesis of hWJ-MSCs. These results showed that the addition of spidroin silk from A. appensa. had impact on scaffold compressive strength and chondrogenic differentiation of hWJ-MSC and had the potential for further development of bio-based material scaffold in cartilage tissue engineering.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Imam Rosadi ◽  
Karina Karina ◽  
Iis Rosliana ◽  
Siti Sobariah ◽  
Irsyah Afini ◽  
...  

Abstract Background Cartilage tissue engineering is a promising technique for repairing cartilage defect. Due to the limitation of cell number and proliferation, mesenchymal stem cells (MSCs) have been developed as a substitute to chondrocytes as a cartilage cell-source. This study aimed to develop cartilage tissue from human adipose-derived stem cells (ADSCs) cultured on a Bombyx mori silk fibroin scaffold and supplemented with 10% platelet-rich plasma (PRP). Methods Human ADSCs and PRP were characterized. A silk fibroin scaffold with 500 μm pore size was fabricated through salt leaching. ADSCs were then cultured on the scaffold (ADSC-SS) and supplemented with 10% PRP for 21 days to examine cell proliferation, chondrogenesis, osteogenesis, and surface marker expression. The messenger ribonucleic acid (mRNA) expression of type 2 collagen, aggrecan, and type 1 collagen was analysed. The presence of type 2 collagen confirming chondrogenesis was validated using immunocytochemistry. The negative and positive controls were ADSC-SS supplemented with 10% foetal bovine serum (FBS) and ADSC-SS supplemented with commercial chondrogenesis medium, respectively. Results Cells isolated from adipose tissue were characterized as ADSCs. Proliferation of the ADSC-SS PRP was significantly increased (p < 0.05) compared to that of controls. Chondrogenesis was observed in ADSC-SS PRP and was confirmed through the increase in glycosaminoglycans (GAG) and transforming growth factor-β1 (TGF-β1) secretion, the absence of mineral deposition, and increased surface marker proteins on chondrogenic progenitors. The mRNA expression of type 2 collagen in ADSC-SS PRP was significantly increased (p < 0.05) compared to that in the negative control on days 7 and 21; however, aggrecan was significantly increased on day 14 compared to the controls. ADSC-SS PRP showed stable mRNA expression of type 1 collagen up to 14 days and it was significantly decreased on day 21. Confocal analysis showed the presence of type 2 collagen in the ADSC-SS PRP and positive control groups, with high distribution outside the cells forming the extracellular matrix (ECM) on day 21. Conclusion Our study showed that ADSC-SS with supplemented 10% PRP medium can effectively support chondrogenesis of ADSCs in vitro and promising for further development as an alternative for cartilage tissue engineering in vivo.


2021 ◽  
Vol 53 (3) ◽  
pp. 415-427
Author(s):  
Anggraini Barlian ◽  
Marselina Irasonia Tan ◽  
Ergha Widya Sarjana ◽  
Noviana Vanawati

Previous research has proven that 10% platelet-rich plasma (PRP) can enhance growth and differentiation of human adipose derived stem cells (hADSC) grown on silk fibroin scaffold into chondrocytes. A low oxygen concentration (hypoxia) condition is an important factor that potentially affects the ability of hADSC to grow and differentiate. The objective of this research was to analyze the difference in growth and differentiation capacity of hADSC grown on salt leached silk fibroin scaffold supplemented by 10% PRP under normoxic and hypoxic conditions. The growth capacity of the hADSC was determined by MTT assay and differentiation was tested using glycosaminoglycan (GAG) content analysis, while chondrocyte markers were visualized with the immunocytochemistry (ICC) method. This research observed hADSC proliferation under normoxic and hypoxic conditions for 21 days. Visualization of type 2 collagen showed that it was more abundant under hypoxia compared to normoxia.  HIF-1α was only detected in the hADSC cultured in hypoxic conditions. In conclusion, culture under hypoxic conditions increases the capacity of hADSC to grow and differentiate into chondrocytes. This is the first study that has shown that hypoxia is able to enhance the proliferation and differentiation of hADSC grown on 3D salt leached silk fibroin scaffold supplemented by 10% PRP.


2016 ◽  
Vol 17 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Ying Yu ◽  
Yafei Wang ◽  
Chen Lu ◽  
Dan Long ◽  
Qiang Zhang ◽  
...  

2019 ◽  
Vol 5 (5) ◽  
pp. 2134-2146 ◽  
Author(s):  
Nesa Fani ◽  
Mehdi Farokhi ◽  
Mahmoud Azami ◽  
Amir Kamali ◽  
Nasrin Lotfi Bakhshaiesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document