scholarly journals Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies

Author(s):  
Cédric Cabau ◽  
Frédéric Escudié ◽  
Anis Djari ◽  
Yann Guiguen ◽  
Julien Bobe ◽  
...  

Background De novo transcriptome assembly of short reads is now a common step in expression analysis of organisms lacking a reference genome sequence. Several software packages are available to perform this task. Even if their results are of good quality it is still possible to improve them in several ways including redundancy reduction or error correction. Trinity and Oases are two commonly used de novo transcriptome assemblers. The contig sets they produce are of good quality. Still, their compaction (number of contigs needed to represent the transcriptome) and their quality (chimera and nucleotide error rates) can be improved. Results We built a de novo RNA-Seq Assembly Pipeline (DRAP) which wraps these two assemblers (Trinity and Oases) in order to improve their results regarding the above-mentioned criteria. DRAP reduces from 1,3 to 15 fold the number of resulting contigs of the assemblies depending on the read set and the assembler used. This article presents seven assembly comparisons showing in some cases drastic improvements when using DRAP. DRAP does not significantly impair assembly quality metrics such are read realignment rate or protein reconstruction counts. Conclusion Transcriptome assembly is a challenging computational task even if good solutions are already available to end-users, these solutions can still be improved while conserving the overall representation and quality of the assembly. The de novo RNA-Seq Assembly Pipeline (DRAP) is an ease to use software package to produce compact and corrected transcript set. DRAP is free, open-source and available at http://www.sigenae.org/drap .

Author(s):  
Cédric Cabau ◽  
Frédéric Escudié ◽  
Anis Djari ◽  
Yann Guiguen ◽  
Julien Bobe ◽  
...  

Background De novo transcriptome assembly of short reads is now a common step in expression analysis of organisms lacking a reference genome sequence. Several software packages are available to perform this task. Even if their results are of good quality it is still possible to improve them in several ways including redundancy reduction or error correction. Trinity and Oases are two commonly used de novo transcriptome assemblers. The contig sets they produce are of good quality. Still, their compaction (number of contigs needed to represent the transcriptome) and their quality (chimera and nucleotide error rates) can be improved. Results We built a de novo RNA-Seq Assembly Pipeline (DRAP) which wraps these two assemblers (Trinity and Oases) in order to improve their results regarding the above-mentioned criteria. DRAP reduces from 1,3 to 15 fold the number of resulting contigs of the assemblies depending on the read set and the assembler used. This article presents seven assembly comparisons showing in some cases drastic improvements when using DRAP. DRAP does not significantly impair assembly quality metrics such are read realignment rate or protein reconstruction counts. Conclusion Transcriptome assembly is a challenging computational task even if good solutions are already available to end-users, these solutions can still be improved while conserving the overall representation and quality of the assembly. The de novo RNA-Seq Assembly Pipeline (DRAP) is an ease to use software package to produce compact and corrected transcript set. DRAP is free, open-source and available at http://www.sigenae.org/drap .


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2988 ◽  
Author(s):  
Cédric Cabau ◽  
Frédéric Escudié ◽  
Anis Djari ◽  
Yann Guiguen ◽  
Julien Bobe ◽  
...  

Background De novo transcriptome assembly of short reads is now a common step in expression analysis of organisms lacking a reference genome sequence. Several software packages are available to perform this task. Even if their results are of good quality it is still possible to improve them in several ways including redundancy reduction or error correction. Trinity and Oases are two commonly used de novo transcriptome assemblers. The contig sets they produce are of good quality. Still, their compaction (number of contigs needed to represent the transcriptome) and their quality (chimera and nucleotide error rates) can be improved. Results We built a de novo RNA-Seq Assembly Pipeline (DRAP) which wraps these two assemblers (Trinity and Oases) in order to improve their results regarding the above-mentioned criteria. DRAP reduces from 1.3 to 15 fold the number of resulting contigs of the assemblies depending on the read set and the assembler used. This article presents seven assembly comparisons showing in some cases drastic improvements when using DRAP. DRAP does not significantly impair assembly quality metrics such are read realignment rate or protein reconstruction counts. Conclusion Transcriptome assembly is a challenging computational task even if good solutions are already available to end-users, these solutions can still be improved while conserving the overall representation and quality of the assembly. The de novo RNA-Seq Assembly Pipeline (DRAP) is an easy to use software package to produce compact and corrected transcript set. DRAP is free, open-source and available under GPL V3 license at http://www.sigenae.org/drap.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 663 ◽  
Author(s):  
Jeffrey Martin ◽  
Vincent M Bruno ◽  
Zhide Fang ◽  
Xiandong Meng ◽  
Matthew Blow ◽  
...  

2019 ◽  
Author(s):  
Xue-ying Zhang(Former Corresponding Author) ◽  
Xian-zhi Sun(New Corresponding Author) ◽  
Sheng Zhang ◽  
Fang-fang Liu ◽  
Jing-hui Yang ◽  
...  

Abstract Aphid ( Macrosiphoniella sanbourni ) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. However, the effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze the self - rooted grafted chrysanthemum ( Chrysanthemum morifolium 'Hangbaiju') and the grafted Artermisia-chrysanthemum ( grafted onto Artemisia scoparia ) transcription response to aphid stress.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125722 ◽  
Author(s):  
Yuli Li ◽  
Xiliang Wang ◽  
Tingting Chen ◽  
Fuwen Yao ◽  
Cuiping Li ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3702 ◽  
Author(s):  
Santiago Montero-Mendieta ◽  
Manfred Grabherr ◽  
Henrik Lantz ◽  
Ignacio De la Riva ◽  
Jennifer A. Leonard ◽  
...  

Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembledde-novo. We used RNA-seq to obtain the transcriptomic profile forOreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome ofO. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating ade-novotranscriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to buildde-novotranscriptome assemblies using readily available software and is freely available at:https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.


2011 ◽  
Vol 54 (12) ◽  
pp. 1129-1133 ◽  
Author(s):  
Geng Chen ◽  
KangPing Yin ◽  
Charles Wang ◽  
TieLiu Shi

2018 ◽  
Author(s):  
Elena Bushmanova ◽  
Dmitry Antipov ◽  
Alla Lapidus ◽  
Andrey D. Prjibelski

AbstractSummaryPossibility to generate large RNA-seq datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the model organisms with finished and annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing and paralogous genes. In this paper we describe a novel transcriptome assembler called rnaSPAdes, which is developed on top of SPAdes genome assembler and explores surprising computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-Seq datasets, and briefly highlight strong and weak points of different assemblers.Availability and implementationrnaSPAdes is implemented in C++ and Python and is freely available at cab.spbu.ru/software/rnaspades/.


Sign in / Sign up

Export Citation Format

Share Document