cistanche deserticola
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Di Lei ◽  
Chris J. Thorogood ◽  
Pengfei Tu ◽  
Yuelin Song ◽  
Linfang Huang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ziping Ai ◽  
Yue Zhang ◽  
Xingyi Li ◽  
Wenling Sun ◽  
Yanhong Liu

Cistanche deserticola is one of the most precious plants, traditionally as Chinese medicine, and has recently been used in pharmaceutical and healthy food industries. Steaming and drying are two important steps in the processing of Cistanche deserticola. Unfortunately, a comprehensive understanding of the chemical composition changes of Cistanche deserticola during thermal processing is limited. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based widely targeted metabolomics analysis was used to investigate the transformation mechanism of Cistanche deserticola active compounds during steaming and drying processes. A total of 776 metabolites were identified in Cistanche deserticola during thermal processing, among which, 77 metabolites were differentially regulated (p < 0.05) wherein 39 were upregulated (UR) and 38 were downregulated (DR). Forty-seven (17 UR, 30 DR) and 30 (22 UR, 8 DR) differential metabolites were identified during steaming and drying, respectively. The most variation of the chemicals was observed during the process of steaming. Metabolic pathway analysis indicated that phenylpropanoid, flavonoid biosynthesis, and alanine metabolism were observed during steaming, while glycine, serine, and threonine metabolism, thiamine metabolism, and unsaturated fatty acid biosynthesis were observed during drying. The possible mechanisms of the chemical alterations during thermal processing were also provided by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Furthermore, the blackening of the appearance of Cistanche deserticola mainly occurred in the steaming stage rather than the drying stage, which is associated with the metabolism of the amino acids. All results indicated that the formation of active compounds during the processing of Cistanche deserticola mainly occurred in the steaming stage.


2021 ◽  
Author(s):  
Qing Du ◽  
Mei Jiang ◽  
Sihui Sun ◽  
Liqiang Wang ◽  
Shengyu Liu ◽  
...  

Abstract Clerodendranthus spicatus (Thunb.) C.Y.Wu is one of the most important medicine for the treatment of nephrology which distributes in south-east of China. In this study, we obtained the complete chloroplast genome of C. spicatus with a length of 152155bp, including a large single copy (LSC) region of 83098bp, small single copy (SSC) region of 17665bp and a pair of inverted repeat (IR) regions of 25696bp with the GC content of 37.86%. The genome contains 36 tRNA, 8 rRNA and 87 protein-coding genes. Most of them have one intron except the ycf3, rps12 and clpP genes. The length of rRNAs varies from 131bp to 2811bp and the GC contents are between 45.28% and 56.54%. The frequency of Isoleucine is fruitful accounting for 4.17%. The codons of AUG, UUA and AGA codon had presence of higher codon usage bias. For the repetitive sequence analysis, Thirty-six tandem repeats were identified with certain conditions. Forty interspersed repeats were identified, including 22 palindromic repeats and 18 direct repeats. The diverse positions of the specific rps19, ycf1, rpl2, trnH, psbA genes within the IR boundary analysis. The genetic distance analysis of the intergenic spacer regions for 5 relative species showed the areas of ndhG-ndhI, accD-psaI, rps15-ycf1, rpl20-clpP, ccsA-ndhD had high K2p value to distinguish the species through developing the molecular markers. From phylogenetic tree, C. spicatu was closely related to the genus of two Salvia speices, Tectona grandis, Cistanche deserticola and Glechoma longituba belonged to the Lamiales.


2021 ◽  
Author(s):  
Zhe Li ◽  
Lkhaasuren Ryenchindorj ◽  
Bonan Liu ◽  
Ji SHI ◽  
Chao Zhang ◽  
...  

Abstract Background: Chinese materia medica processing is a distinguished and unique pharmaceutical technique in traditional Chinese Medicien (TCM), which has played an important role in reducing side effects, increasing medical potencies, altering the properties and even changing the curative effects of raw herbs.The efficacy improvement in medicinal plants is mainly caused by changes in the key substances through an optimized processing procedure.The effect of invigorating the kidney-yang for rice wine-steamed Cistancha deserticola was more strengthened than raw C. deserticola (CD). Methods: To evaluate the effect of processing, a comparative analysis was conducted by utilizing the UPLC-Q-TOF-MSE with the UNIFI informatics platform. In vitro studies were performed for the characterization of constituents as well as metabolites in vivo , and chemical components were determined in CD and its processed products. The multivariate statistical analyses were conducted to evaluate variations between them. OPLS-DA was used for pairwise comparison which revealed their marked differences. Results: In this study, the obtained results revealed considerable variations in phenylethanoid glycosides (PhGs) and iridoids after processing. The detection of 97 compounds was carried out in the extracts of CD and its processed product. In an in-vivo study, 10 prototype components and 44 metabolites were evaluated in rat plasma, feces, and urine. The obtained results revealed that processing leads to the considerable variation in the chemical constituents of CD and affects the disposition of the compounds in-vivo, and phase II metabolic processes were the key cascades of each compound and most of the metabolites were associated with echinacoside or acteoside. Conclusions: According to our literature search, the existing study reveals a comparative study of raw and processed CD for the first time. The obtained data help us to understand the impact of CD processing for further studies.


2021 ◽  
Vol 81 ◽  
pp. 104464
Author(s):  
Wen Xiao ◽  
Yanyan Wei ◽  
Fang Yang ◽  
Xiangyi Lu ◽  
Shuowen Liu ◽  
...  

Heliyon ◽  
2021 ◽  
pp. e07368
Author(s):  
Fangming Wang ◽  
Bingyu Zhuo ◽  
Shuai Wang ◽  
Jin Lou ◽  
Yuan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document