scholarly journals Benthos Expert Network: Findings and recommendations from the Circumpolar Biodiversity Monitoring Program’s State of the Arctic Marine Biodiversity Report (SAMBR)

Author(s):  
Virginie Roy ◽  
Lis Lindal Jørgensen ◽  
Philippe Archambault ◽  
Martin Blicher ◽  
Nina Denisenko ◽  
...  

Currently, > 4,000 macro- and megabenthic invertebrate species are known from Arctic seas, representing the majority of marine faunal diversity in this region. This estimate is expected to increase with future studies. Benthic invertebrates are important ecosystem components as food for fishes, marine mammals, seabirds and humans. The Benthos Expert Network of the Circumpolar Biodiversity Monitoring Program (CBMP) aggregated and reviewed information on the population status and trends of macro- and megabenthic invertebrates across eight Arctic Marine Areas as well as the state of current monitoring efforts for these communities. Drivers are affecting benthic communities on a variety of scales, ranging from pan-Arctic (related to climate change, such as warming, ice decline and acidification) to regional or local scales (such as trawling, river/glacier discharge, and invasive species). Long-term benthic monitoring efforts have largely focused on macro- and megabenthic communities of the Chukchi and Barents Seas. Recently, they are increasing in waters off Greenland and Iceland, as well as in the Canadian Arctic and the Norwegian Sea. All other Arctic Marine Areas are lacking long-term monitoring. The presentation will summarize current level of knowledge and monitoring across the Arctic, drivers of observed trends, and knowledge and monitoring gaps.

2018 ◽  
Author(s):  
Virginie Roy ◽  
Lis Lindal Jørgensen ◽  
Philippe Archambault ◽  
Martin Blicher ◽  
Nina Denisenko ◽  
...  

Currently, > 4,000 macro- and megabenthic invertebrate species are known from Arctic seas, representing the majority of marine faunal diversity in this region. This estimate is expected to increase with future studies. Benthic invertebrates are important ecosystem components as food for fishes, marine mammals, seabirds and humans. The Benthos Expert Network of the Circumpolar Biodiversity Monitoring Program (CBMP) aggregated and reviewed information on the population status and trends of macro- and megabenthic invertebrates across eight Arctic Marine Areas as well as the state of current monitoring efforts for these communities. Drivers are affecting benthic communities on a variety of scales, ranging from pan-Arctic (related to climate change, such as warming, ice decline and acidification) to regional or local scales (such as trawling, river/glacier discharge, and invasive species). Long-term benthic monitoring efforts have largely focused on macro- and megabenthic communities of the Chukchi and Barents Seas. Recently, they are increasing in waters off Greenland and Iceland, as well as in the Canadian Arctic and the Norwegian Sea. All other Arctic Marine Areas are lacking long-term monitoring. The presentation will summarize current level of knowledge and monitoring across the Arctic, drivers of observed trends, and knowledge and monitoring gaps.


2020 ◽  
Vol 12 (18) ◽  
pp. 7814
Author(s):  
Susana Perera-Valderrama ◽  
Sergio Cerdeira-Estrada ◽  
Raúl Martell-Dubois ◽  
Laura Rosique-de la Cruz ◽  
Hansel Caballero-Aragón ◽  
...  

In the Mexican Caribbean, 15 marine protected areas (MPAs) have been established for managing and protecting marine ecosystems. These MPAs receive high anthropogenic pressure from coastal development, tourism, and fishing, all in synergy with climate change. To contribute to the MPAs’ effectiveness, it is necessary to provide a long-term observation system of the condition of marine ecosystems and species. Our study proposes the establishment of a new marine biodiversity monitoring program (MBMP) focusing on three MPAs of the Mexican Caribbean. Five conservation objects (COs) were defined (coral reefs, seagrass beds, mangroves, marine turtles, and sharks-rays) for their ecological relevance and the pressures they are facing. Coral reef, seagrass and mangroves have multiple biological, biogeochemical and physical interactions. Marine turtles are listed as endangered species, and the status of their populations is unknown in the marine area of the MPAs. Elasmobranchs play a key role as top and medium predators, and their populations have been poorly studied. Indicators were proposed for monitoring each CO. As a technological innovation, all information obtained from the MBMP will be uploaded to the Coastal Marine Information and Analysis System (SIMAR), a public, user-friendly and interactive web platform that allows for automatic data management and processing.


2018 ◽  
Author(s):  
Kevin J Hedges ◽  
Shannon MacPhee ◽  
Hreiðar Þór Valtýsson ◽  
Edda Johannesen ◽  
Catherine W Mecklenburg

Pelagic and benthic fish species are important in Arctic marine ecosystems because they transfer energy to predators such as seabirds, marine mammals, as well as people. The CBMP Marine Fishes Expert Network aggregated and reviewed data on the population status and trends of three marine fish Focal Ecosystem Components (FECs) across eight Arctic Marine Areas. Fishes are affected by environmental conditions such as temperature, sea ice availability and salinity, and are constrained by prey availability and predator pressure, which can be influenced by climate change. The three marine fish FECs discussed here are indicative of different changes that are occurring in the Arctic and demonstrate the varied responses observed among species. The presentation will summarize current level of monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Haakon Hop ◽  
Bodil A. Bluhm ◽  
Igor A. Melnikov ◽  
Michel Poulin ◽  
Mikko Vihtakari ◽  
...  

Sea ice is an important Arctic habitat that supports a high diversity of species—with over 1276 protist taxa alone. Multi-year sea ice is being replaced by first-year ice and open water, which will cause shifts in ice algal communities with cascading effects on the ice-associated ecosystem. Documentation of ice biota composition, abundance and natural variability is critical for evaluating responses to the decline in Arctic sea ice. The Sea-ice Biota Expert Network, therefore, aggregated and reviewed data on status and trends of ice-associated Bacteria, Archaea, microalgae, meiofauna, and under-ice macrofauna Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as current monitoring. Sea ice biota monitoring has occurred most frequently in the central Arctic, Svalbard area, Barrow (Alaska) and the Canadian Arctic, with recent sites in northern Greenland. Sea ice algal community structure has possibly changed in the central Arctic between the 1980s and 2010s, and ice-amphipod abundance and biomass have declined in the Svalbard area since the 1980s. Consistent monitoring protocols, equipment and methodology should be implemented. The presentation also evaluates dominant drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Kit M. Kovacs ◽  
Rosa Meehan ◽  
Stas Belikov ◽  
Genevieve Desportes ◽  
Steve Ferguson ◽  
...  

Marine mammals are top predators in Arctic marine ecosystems and are key to ecosystem functioning. Many Arctic marine mammal species are important resources and hold special cultural significance in Arctic communities. The CBMP (Circumpolar Biodiversity Monitoring Programme) Marine Mammal Expert Network aggregated and reviewed data on the population status and trends of all 11 ice-associated marine mammal Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as the state of current monitoring (and research) efforts for these species. Changes taking place in the physical environment in the Arctic due to global warming are affecting marine mammal behaviour, abundance, growth rates, body condition and reproduction, and impacting the resilience of marine mammal populations with concomitant effects on the people who rely on them for subsistence, economic and cultural purposes. Effective marine mammal population monitoring will need improved techniques and application at appropriate geographic scales to measure trends that can be evaluated relative to changes in climate (e.g., sea-ice cover) and human activities (e.g., hunting, shipping, mineral exploration). This presentation will summarize current marine mammal monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Kathy Kuletz ◽  
Mark Mallory ◽  
Grant Gilchrist ◽  
Gregory J Robertson ◽  
Flemming Merkel ◽  
...  

Seabirds provide ecosystem services, notably as human food in many Arctic regions, major tourist attractions, as well as being an important link to the Arctic food web and returning nutrients from the oceans to coastal areas. Changes in seabird populations and diversity will affect regional sustainability for Arctic communities and ecosystems. The CBird Expert Network aggregated and reviewed data on the population status and trends of eight seabird Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as the state of current monitoring efforts for these species. Population trends for seabirds vary within and among regions, making it difficult to assess circumpolar trends. Nonetheless, among key sites, current trends indicate that most of the stable or increasing populations are in the Pacific Arctic and Arctic Archipelago, while most of the declining populations are in the Atlantic Arctic. Most circumpolar nations have at least one source of long-term seabird monitoring datasets, but efforts vary across regions. Long-term monitoring efforts are crucial to examining the effects of environmental drivers to changes in seabird populations. The presentation will summarize current level of monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Haakon Hop ◽  
Bodil A. Bluhm ◽  
Igor A. Melnikov ◽  
Michel Poulin ◽  
Mikko Vihtakari ◽  
...  

Sea ice is an important Arctic habitat that supports a high diversity of species—with over 1276 protist taxa alone. Multi-year sea ice is being replaced by first-year ice and open water, which will cause shifts in ice algal communities with cascading effects on the ice-associated ecosystem. Documentation of ice biota composition, abundance and natural variability is critical for evaluating responses to the decline in Arctic sea ice. The Sea-ice Biota Expert Network, therefore, aggregated and reviewed data on status and trends of ice-associated Bacteria, Archaea, microalgae, meiofauna, and under-ice macrofauna Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as current monitoring. Sea ice biota monitoring has occurred most frequently in the central Arctic, Svalbard area, Barrow (Alaska) and the Canadian Arctic, with recent sites in northern Greenland. Sea ice algal community structure has possibly changed in the central Arctic between the 1980s and 2010s, and ice-amphipod abundance and biomass have declined in the Svalbard area since the 1980s. Consistent monitoring protocols, equipment and methodology should be implemented. The presentation also evaluates dominant drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Kevin J Hedges ◽  
Shannon MacPhee ◽  
Hreiðar Þór Valtýsson ◽  
Edda Johannesen ◽  
Catherine W Mecklenburg

Pelagic and benthic fish species are important in Arctic marine ecosystems because they transfer energy to predators such as seabirds, marine mammals, as well as people. The CBMP Marine Fishes Expert Network aggregated and reviewed data on the population status and trends of three marine fish Focal Ecosystem Components (FECs) across eight Arctic Marine Areas. Fishes are affected by environmental conditions such as temperature, sea ice availability and salinity, and are constrained by prey availability and predator pressure, which can be influenced by climate change. The three marine fish FECs discussed here are indicative of different changes that are occurring in the Arctic and demonstrate the varied responses observed among species. The presentation will summarize current level of monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Kathy Kuletz ◽  
Mark Mallory ◽  
Grant Gilchrist ◽  
Gregory J Robertson ◽  
Flemming Merkel ◽  
...  

Seabirds provide ecosystem services, notably as human food in many Arctic regions, major tourist attractions, as well as being an important link to the Arctic food web and returning nutrients from the oceans to coastal areas. Changes in seabird populations and diversity will affect regional sustainability for Arctic communities and ecosystems. The CBird Expert Network aggregated and reviewed data on the population status and trends of eight seabird Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as the state of current monitoring efforts for these species. Population trends for seabirds vary within and among regions, making it difficult to assess circumpolar trends. Nonetheless, among key sites, current trends indicate that most of the stable or increasing populations are in the Pacific Arctic and Arctic Archipelago, while most of the declining populations are in the Atlantic Arctic. Most circumpolar nations have at least one source of long-term seabird monitoring datasets, but efforts vary across regions. Long-term monitoring efforts are crucial to examining the effects of environmental drivers to changes in seabird populations. The presentation will summarize current level of monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


2018 ◽  
Author(s):  
Kit M. Kovacs ◽  
Rosa Meehan ◽  
Stas Belikov ◽  
Genevieve Desportes ◽  
Steve Ferguson ◽  
...  

Marine mammals are top predators in Arctic marine ecosystems and are key to ecosystem functioning. Many Arctic marine mammal species are important resources and hold special cultural significance in Arctic communities. The CBMP (Circumpolar Biodiversity Monitoring Programme) Marine Mammal Expert Network aggregated and reviewed data on the population status and trends of all 11 ice-associated marine mammal Focal Ecosystem Components (FECs) across eight Arctic Marine Areas as well as the state of current monitoring (and research) efforts for these species. Changes taking place in the physical environment in the Arctic due to global warming are affecting marine mammal behaviour, abundance, growth rates, body condition and reproduction, and impacting the resilience of marine mammal populations with concomitant effects on the people who rely on them for subsistence, economic and cultural purposes. Effective marine mammal population monitoring will need improved techniques and application at appropriate geographic scales to measure trends that can be evaluated relative to changes in climate (e.g., sea-ice cover) and human activities (e.g., hunting, shipping, mineral exploration). This presentation will summarize current marine mammal monitoring across the Arctic, the status and trends of FECs, drivers of observed trends, and knowledge and monitoring gaps.


Sign in / Sign up

Export Citation Format

Share Document