scholarly journals Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors during different hydrological years in a sub-lake of Lake Poyang, China

Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Shallow lakes are important for the maintenance of Lake Poyang ecosystem integrity, and zooplankton play an important role in its substance and energy flow. We investigated zooplankton in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang with seasonal water level fluctuations. The study aims to understand their seasonal dynamics and interannual variation of zooplankton community in relation to environmental variables. A total of 115 species were identified in all samples of the 4 years, comprising 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in quantity and its species richness and abundance were significantly higher than Cladocera and Copepoda (P<0.05, by ANOVA), while Cladocera dominated in biomass. Species richness of Rotifera showed a significant seasonal difference (P<0.05 by ANOVA). The clear decline of zooplankton species richness in spring was mainly due to the dramatic decrease of Rotifera species. Furthermore, both density and biomass of zooplankton showed significant seasonal differences (P<0.05). Generally, the density and biomass of zooplankton were higher in summer and autumn than in winter and spring. Biodiversity indices e.g., Shannon-Wiener index and evenness were dramatically lower in spring than in other seasons. Non-metric multidimensional scaling (NMDS) analysis suggested that the zooplankton communities can be divided into three groups: spring community, summer–autumn community and winter community associated with distinct indicator species. The results of species richness and community analysis showed that the seasonal succession of zooplankton communities did not have interannual reproducibility. Redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. In addition, water level fluctuations, disturbance by wintering waterbirds and artificial water level control during dry season have potential effects on zooplankton community structure too. This study is helpful to further understand the ecosystem stability of lake connected with rivers and provide scientific guidance for protection of lake wetlands.

2019 ◽  
Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Shallow lakes are important for the maintenance of Lake Poyang ecosystem integrity, and zooplankton play an important role in its substance and energy flow. We investigated zooplankton in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang with seasonal water level fluctuations. The study aims to understand their seasonal dynamics and interannual variation of zooplankton community in relation to environmental variables. A total of 115 species were identified in all samples of the 4 years, comprising 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in quantity and its species richness and abundance were significantly higher than Cladocera and Copepoda (P<0.05, by ANOVA), while Cladocera dominated in biomass. Species richness of Rotifera showed a significant seasonal difference (P<0.05 by ANOVA). The clear decline of zooplankton species richness in spring was mainly due to the dramatic decrease of Rotifera species. Furthermore, both density and biomass of zooplankton showed significant seasonal differences (P<0.05). Generally, the density and biomass of zooplankton were higher in summer and autumn than in winter and spring. Biodiversity indices e.g., Shannon-Wiener index and evenness were dramatically lower in spring than in other seasons. Non-metric multidimensional scaling (NMDS) analysis suggested that the zooplankton communities can be divided into three groups: spring community, summer–autumn community and winter community associated with distinct indicator species. The results of species richness and community analysis showed that the seasonal succession of zooplankton communities did not have interannual reproducibility. Redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. In addition, water level fluctuations, disturbance by wintering waterbirds and artificial water level control during dry season have potential effects on zooplankton community structure too. This study is helpful to further understand the ecosystem stability of lake connected with rivers and provide scientific guidance for protection of lake wetlands.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7590 ◽  
Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Background Sub-lakes are important for the maintenance of the ecosystem integrity of Lake Poyang, and zooplankton play an important role in its substance and energy flow. Methods A seasonal investigation of zooplankton was conducted in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang. The aim of the present study was to understand the seasonal dynamics and interannual variation of zooplankton communities and their relationship to environmental factors. Results A total of 115 species were identified in all samples in the four years, which comprised of 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in terms of quantity, and its species richness and abundance were significantly higher when compared to Cladocera and Copepoda (P < 0.05), while Cladocera dominated in terms of biomass. The species richness of Rotifera exhibited a significant seasonal difference (P < 0.05). Both the density and biomass of zooplankton revealed significant seasonal differences (P < 0.05). In general, the density and biomass of zooplankton were higher in summer and autumn, when compared to winter and spring. Biodiversity indices were dramatically lower in spring than in the other seasons. The non-metric multidimensional scaling (NMDS) analysis suggested that these zooplankton communities can be divided into three groups: spring community, summer-autumn community, and winter community. The seasonal succession of zooplankton communities did not have interannual reproducibility. In high water level years, the dominant species of zooplankton (Cladocerans and Copepods) in the wet season had a lower density, and the result in low water level years was exactly the opposite. The redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. Conclusions The community structure of zooplankton has a significant seasonal pattern, but has no interannual repeatability. In high water level years, the dominant species of zooplankton (Cladocerans and Copepods) in the wet season had a lower density, and the result in low water level years was exactly the opposite. The density, biomass and diversity indices of zooplankton were significantly different in different seasons. The present study was helpful in the further understanding of the ecosystem stability of lakes connected with rivers, providing scientific guidance for the protection of lake wetlands.


2015 ◽  
Vol 75 (3 suppl 1) ◽  
pp. 47-54 ◽  
Author(s):  
T. Matsumura-Tundisi ◽  
JG. Tundisi ◽  
F. Souza-Soares ◽  
JEM. Tundisi

Abstract The zooplankton community of the lower Xingu River shows strong fluctuations in species richness and number of organisms during periods of water level fluctuation. Pulses of density and species richness are adapted to the pulses in water flows and water level. This is conected with reproductive strategies of some zooplankton groups. The spatial heterogeneity of the lower Xingu River consisting of braided channels, bedrocks, macrophyte stands, is probably a relevant factor for the species richness of the zooplankton communities, and may be a fundamental factor for the overall aquatic biodiversity of the lower Xingu River.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 93
Author(s):  
Baogui Liu ◽  
Chuanqiao Zhou ◽  
Lilin Zheng ◽  
Haixin Duan ◽  
Ying Chen ◽  
...  

Flood pulse related physical variables (FLOOD) can affect zooplankton community structure through local factors directly and can also influence through regional dispersal factors of metacommunity concepts indirectly. Therefore, we infer that spatial patterns of zooplankton communities could be related to metacommunity concepts and their importance may depend on the size of the aquatic/terrestrial transition zone (ATTZ). Herein, we explored the relative importance of limnological (LIMNO) and FLOOD variables in zooplankton community by analyzing data from 272 sites across three floodplain lakes in the middle reaches of the Yangtze River. Our results showed that the variation in the zooplankton community can be well explained by the LIMNO and FLOOD variables in all of the lakes under the low water level season. However, during the high water level season, neither LIMNO nor FLOOD can explain the spatial variances of zooplankton. Therefore, our results indicated that testing biogeographical theories and macroecological laws using zooplankton should consider temporal aspects of flood pulse. Furthermore, we noted that the number of explained variance by local variables is negatively correlated with the size of the ATTZ. Metacommunity concepts provide complementary insights in explaining zooplankton spatial patterns within large floodplain systems, which also provide a theoretical basis for ATTZ protection in floodplain management.


Author(s):  
Natalia Kuczyńska-Kippen ◽  
Barbara Nagengast ◽  
Sofia Celewicz-Gołdyn ◽  
Małgorzata Klimko

Zooplankton community structure within various macrophyte stands of a small water body in relation to seasonal changes in water level


1979 ◽  
Vol 36 (11) ◽  
pp. 1354-1363 ◽  
Author(s):  
W. Gary Sprules ◽  
L. Blair Holtby

Three different characterizations of limnetic zooplankton communities from lakes of the Bruce Peninsula, Ontario are compared with respect to their usefulness in limnological studies: a conventional taxonomic one, one based on the body size and feeding ecology of the organisms, and one based on image analysis of the particle size spectrum. In comparison with the taxonomic characterization, the ecological and image analysis characterizations reflect zooplankton community features which are more closely related to the efficiency and nature of energy flow through pelagic ecosystems. Furthermore, it is demonstrated that these features have stronger statistical relations to morphometric and hydrological properties of lakes. The ecological and image analyses are thus not only more useful in studies seeking to make predictions about lake function from lake type but actually require less time, money and expertise in the acquisition of zooplankton data. In comparisons of zooplankton communities from the disparate faunal regions of the Bruce Peninsula, Ontario and southeast Asia, particularly Sri Lanka, more useful functional insights emerge from a body size-feeding ecology characterization than from a taxonomically based one. Key words: community structure, image analysis, Bruce Peninsula, tropical zooplankton, zoogeography, multivariate analysis


2018 ◽  
Author(s):  
Marta Głuchowska ◽  
Emilia Trudnowska ◽  
Slawomir Kwasniewski

The advection of warm Atlantic water into the Arctic influences not only the thermal and sea ice conditions in the Arctic Ocean and the adjacent seas but also the Arctic marine biota. Earlier efforts to characterize the response of zooplankton communities to the increasing influence of warm AW were focused mostly on changes in taxonomic diversity and community structure, but how the zooplankton functional role will evolve under future global warming scenarios remains largely unknown. Based on the zooplankton collection gathered along a thermal gradient from temperate to Arctic marine domains (76-79°N) and an extensive functional trait matrix, we assessed the zooplankton taxonomical and functional structure and diversity under different temperature regimes. The results suggest that the temperature effects zooplankton community structure, taking into account not only the taxonomic, but also functional features. The findings can be used in predicting changes in the pelagic realm in the warming Arctic Ocean, and in constructing and tuning plankton components of ecosystem models.


2018 ◽  
Author(s):  
Marta Głuchowska ◽  
Emilia Trudnowska ◽  
Slawomir Kwasniewski

The advection of warm Atlantic water into the Arctic influences not only the thermal and sea ice conditions in the Arctic Ocean and the adjacent seas but also the Arctic marine biota. Earlier efforts to characterize the response of zooplankton communities to the increasing influence of warm AW were focused mostly on changes in taxonomic diversity and community structure, but how the zooplankton functional role will evolve under future global warming scenarios remains largely unknown. Based on the zooplankton collection gathered along a thermal gradient from temperate to Arctic marine domains (76-79°N) and an extensive functional trait matrix, we assessed the zooplankton taxonomical and functional structure and diversity under different temperature regimes. The results suggest that the temperature effects zooplankton community structure, taking into account not only the taxonomic, but also functional features. The findings can be used in predicting changes in the pelagic realm in the warming Arctic Ocean, and in constructing and tuning plankton components of ecosystem models.


2009 ◽  
Vol 69 (3) ◽  
pp. 819-835 ◽  
Author(s):  
R. Nadai ◽  
R. Henry

A river lateral lake (Coqueiral Lake marginal to Paranapanema River in its mouth zone into Jurumirim Reservoir, São Paulo, Brazil) presented fragmentation into four small isolated bodies of water during a prolonged drought period, disrupting the link with the river. The aim of this work was to compare the temporal modifications on zooplankton community structure (total abundance, species richness, and diversity) in the four water bodies. Zooplankton samplings and abiotic factor measurements were made in two periods - during isolation phase of the lake in relation to river and after re-establishment of hydrologic connectivity. A concentration effect on zooplankton abundance was recorded with drought progression, but without significant modifications in species richness and diversity. When the river inundation pulse occurred, a reduction in total zooplankton density was observed due to the dilution effect and a significant increase in species richness and diversity was recorded. Lateral water influx from the river to the lacustrine environment acts as a temporary disturbance factor on the zooplankton community structure. Zooplankton species composition presented some modifications between the two periods. Zooplankton organism drift in water from the river to the lake, removal of individuals from the aquatic macrophytes, and eclosion of resting eggs from sediment are probable factors that can increase zooplankton species richness immediately after lateral pulse inundation with water by the river.


Author(s):  
Dorothée Vincent ◽  
Christophe Luczak ◽  
Benoît Sautour

Short-term changes in zooplankton community structure and distribution in relation to changes in hydrological features were studied during summer in two distinct areas of Arcachon Bay (France) from July to September 1986. One sampling site was chosen in the northern part of the bay, influenced by oceanic inputs, and the other one in the south-eastern part of the bay, close to an estuarine zone, influenced by the River Leyre's inputs. Three different zooplankton assemblages were identified according to a temperature–salinity gradient: (i) an estuarine assemblage dominated by Acartia bifilosa and Acartia tonsa; (ii) an autochthonous assemblage composed of Acartia discaudata; and (iii) a coastal neritic one composed of Paracalanus parvus, Oncaea venusta and Penilia avirostris. All these latter assemblages remained stable during most part of the study period. However, a brief climatic event (storm event) occurred in mid-August and gave rise to a sharp decrease in temperatures along with significant changes in zooplankton structure and distributions in the bay. The estuarine community vanished and was replaced by the autochthonous community. In the northern part of the bay, the coastal neritic community succeeded the previously observed autochthonous community.  The effect of this brief climatic event was durable since recovery time lasted two weeks with regard to hydrological features and zooplankton communities. In addition, the climatic event also had ecological consequences since it permitted spreading of planktonic organisms from small-localized areas throughout the bay.


Sign in / Sign up

Export Citation Format

Share Document