high water level
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Haiyan Wang ◽  
Jun Yang ◽  
Tao Li ◽  
Jianqiang Zhu ◽  
Zhangyong Liu

Abstract Changhu Lake, a large shallow eutrophic lake in central China, experienced an extreme low water level event from November 2015 to January 2016 followed by an extreme high water level event in July 2016. In this study, we examined the effects of two extreme water levels on the nutrient status of Changhu Lake over five years. The nutrient concentrations in Changhu Lake showed significant interannual variations and the water quality of sites in the western part of Changhu Lake was better compared to sites at the outlet of the lake. In late 2015, the effect of low water levels led to a significant increase in nutrient concentrations. After July 2016, however, the high water level occurred leading to a marked decrease in nutrient concentrations. These changes in nutrient parameters were strongly related to the water level fluctuations. The dilution effect was the key process that determined the variations of nutrient parameters in Changhu Lake. As extreme water levels are likely to become more frequent during the twenty-first century, this work may provide some insights into the conservation and management of lake ecosystems in the face of climate change and human activity.


2021 ◽  
Vol 37 ◽  
pp. 100907
Author(s):  
Myungjin Lee ◽  
Younghoon Yoo ◽  
Hongjun Joo ◽  
Kyung Tak Kim ◽  
Hung Soo Kim ◽  
...  

2021 ◽  
Author(s):  
Huazu Liu ◽  
Qiu Jin ◽  
Ruijie Shi ◽  
Chengxu Lv ◽  
Junxiao Luo ◽  
...  

Abstract. Hydrological conditions drive the distribution of plant communities in wetlands to form vegetation zones where the material cycling varies with plant species. This mediation effect caused by the distribution of vegetation under hydrological conditions will affect the emission of N2O during the nitrogen migration in wetlands. In this study, five vegetation zones in the second largest wetland of China were investigated in situ during high and low water levels to elucidate the effect mediated by vegetation. With the increase in the rate of change of water levels, the zones of the mud flat, nymphoides, phalaris, carex, and reeds were distributed in sequence in the wetland, and the densities of carbon and nitrogen sequestrated by plants also increased. The carbon and nitrogen densities in each zone during low water level was significantly higher than that during high water level, while the organic carbon and the total nitrogen of sediments during high water level was higher. Sediments converted between source and sink for both carbon and nitrogen, during the annual fluctuation in water level. The flux in N2O emissions showed significant differences between the vegetation zones during each water level period. The emission flux decreased with the increasing C : N ratio in sediments, approximating the threshold at 0.23 μg m−2 h−1 when the C : N ratio > 25. The phylum abundance of Firmicutes, Proteobacteria, and Chloroflexi in sediments increased with flooding. The denitrifying nirS and nirK genes and anammox hzsB gene were significantly affected by water level fluctuation, with the maximal variations of these genes occurring in the mud flat and nymphoides zone. The results indicate that the distribution of plants under hydrological conditions modified the stoichiometric ratio of sediments, resulting in the variations of N2O emission fluxes and microbial communities in vegetation zones. Therefore, hydraulic regulation rather than direct planting would be an effective strategy to reduce greenhouse gas emissions in freshwater wetlands.


2020 ◽  
Vol 12 (3) ◽  
pp. 723-737
Author(s):  
Hendra Achiari ◽  
Ayu Libiaty Ahmad ◽  
Dede M Sulaiman

Pantai berlumpur rentan terhadap kerusakan akibat gelombang, sehingga diperlukan perlindungan pantai yang salah satunya menggunakan pemecah gelombang tipe permeable. Tipe permeable yang dikembangkan ini disebut sebagai Pemecah Gelombang Tiang Pancang. Bahan yang digunakan untuk memodelkan struktur tersebut (prototipe) di laboratorium adalah bambu bulat bersekat yaitu bambu bulat dari taman Pringgodani dengan diameter 1 cm, tinggi 20 cm dengan sekat kayu multiblok setebal 2 cm. Analisis refleksi dan transmisi terhadap hasil pengujian model fisik 2D terhadap pemecah gelombang diperlukan untuk mencapai optimasi dalam penggunaannya. Hasil pengujian laboratorium membuktikan bahwa Pemecah Gelombang ini cukup efektif pada skenario yang memiliki nilai Kt yang lebih kecil dan nilai Kr yang lebih besar. Pada percobaan ini pengujian dilakukan dengan skenario tinggi muka air pada Mean Sea Level (MSL) (44 cm) dan High Water Level (HWL) (50 cm) dengan 2 skenario spasi antar tiang yaitu 1 cm dan 2 cm pada masing-masing tinggi muka air. Kemudian hasil perhitungan Kt dan Kr dibandingkan dengan variabel non-dimensional kecuraman gelombang (Hi/gT2) dan kemiringan gelombang (Hi/L) . Hasil percobaan laboratorium menunjukkan bahwa nilai Kt lebih rendah pada saat kondisi MSL, dan nilai Kr lebih tinggi pada saat kondisi MSL hal ini menunjukkan bahwa Pemecah Gelombang Bambu Bulat Bersekat ini lebih efektif pada muka air rendah dari pada muka air tinggi.


2020 ◽  
Vol 6 ◽  
pp. 11-32
Author(s):  
Anna Yu. Bessudova ◽  
Larisa M. Sorokovikova ◽  
Valery N. Sinyukovich ◽  
Alena D. Firsova ◽  
Irina V. Tomberg ◽  
...  

Large tributaries of Lake Baikal considered as a “hotspot” for silica-scaled chrysophytes diversity. Here we presented the updated species composition of silica-scaled chrysophytes and ecological parameters of their habitat in the Barguzin and Selenga River tributaries and delta in a high water level period. The number of registered taxa was significantly lower compared to the low water conditions (23 versus 66 species) and included the following genera with a given number of species: Chrysosphaerella – 1; Paraphysomonas – 2; Clathromonas – 1; Spiniferomonas – 3; Mallomonas – 9; Synura – 7. Mallomonas guttata and Synura borealis were identified in Russian waters for the first time. Thus, the corrected total list of silica-scaled chrysophytes in the Baikal Region includes 79 taxa. Though, the high water level reduced the total number of silica-scaled chrysophyte taxa, it made the water ecosystem more dynamic by enriching it with the entirely new species for this region.


2020 ◽  
Author(s):  
Joshua Kiesel ◽  
Mark Schuerch ◽  
Elizabeth K. Christie ◽  
Iris Möller ◽  
Tom Spencer ◽  
...  

<p>Managed realignment (MR), a form of of nature-based coastal adaptation to reduce flood and erosion risk, involves the abandonment of existing sea defences and their relocation further inland. MR aims to (re)create intertidal habitats, such as saltmarshes, between the old and new lines of defence; as well as flood water storage. The newly created habitats dissipate wave energy and thus provide new natural coastal protection. However, the assessment of the success of MR is difficult, as restoration targets are often vague and data on project performance are scarce. The few studies that do exist show a lack of understanding about the effects of MR scheme design on high water level (HWL) attenuation and thus its coastal protection function.</p><p>Here we present the results of a 2-D hydrodynamic model, calibrated and validated against field measurements of equinoctial tides between August and October 2017, taken within, and seaward of, the Freiston Shore MR site, The Wash, eastern England. Using this model, we performed sensitivity analyses to explore whether or not, and how, the Freiston Shore MR scheme design affects HWL attenuation. For this purpose we changed the configuration of the old defence line and the breaches created within it for renewed tidal exchange and manipulated the digital elevation model of within-site topography. Specifically, we applied six scheme design scenarios (two scenarios with three breaches and varying MR areas, three single breach scenarios of different breach width and one bank removal scenario) and assessed High Water Level (HWL) attenuation rates for each scenario.</p><p>Our results show that scheme design, particularly storage area and number and size of breaches, of the Freiston Shore MR site had a significant effect on the site´s HWL attenuation capacity. When the tidal prism is varied by changing the number and size of breaches and the storage area kept constant, modelled HWL attenuation rates increased with decreasing tidal prism. However, largest HWL attenuation rates (> 10 cm km<sup>-1</sup>) were only obtained if the MR area was of sufficient size, therefore, it is only the larger sites which are exhibiting effective coastal protection. Consequently, the maximum modelled HWL attenuation rate occurred (up to 73 cm km<sup>-1</sup>) for the scenario with the largest area (142 ha).</p><p>The Mean High Water Depth (MHWD) from each of these scenarios explained most of the variation in HWL attenuation between the scenarios (R² = 0.996). This strong correlation may help to inform the construction of more efficient MR schemes with respect to coastal protection in the future.</p>


2020 ◽  
Vol 126 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Fia Bengtsson ◽  
Gustaf Granath ◽  
Nils Cronberg ◽  
Håkan Rydin

Abstract Background and Aims The ecosystem engineers Sphagnum (peat mosses) are responsible for sequestering a large proportion of carbon in northern peatlands. Species may respond differently to hydrological changes, and water level changes may lead to vegetation shifts in peatlands, causing them to revert from sinks to sources of carbon. We aimed to compare species-specific responses to water level drawdown within Sphagnum, and investigate which traits affect water economy in this genus. Methods In a mesocosm experiment, we investigated how water level drawdown affected water content (WC) in the photosynthetically active apex of the moss and maximum quantum yield of photosystem II (i.e. Fv/Fm) of 13 Sphagnum species. Structural traits were measured, and eight anatomical traits were quantified from scanning electron microscopy micrographs. Key Results Mixed-effects models indicated that at high water level, large leaves were the most influential predictor of high WC, and at low water level WC was higher in species growing drier in the field, with larger hyaline cell pore sizes and total pore areas associated with higher WC. Higher stem and peat bulk density increased WC, while capitulum mass per area and numerical shoot density did not. We observed a clear positive relationship between Fv/Fm and WC in wet-growing species. Conclusions While we found that most hummock species had a relatively high water loss resistance, we propose that some species are able to maintain a high WC at drawdown by storing large amounts of water at a high water level. Our result showing that leaf traits are important warrants further research using advanced morphometric methods. As climate change may lead to more frequent droughts and thereby water level drawdowns in peatlands, a mechanistic understanding of species-specific traits and responses is crucial for predicting future changes in these systems.


Sign in / Sign up

Export Citation Format

Share Document