scholarly journals Milankovitch forcing of Early Jurassic wildfires

Author(s):  
Teuntje Parnassia Hollaar ◽  
Sarah Jane Baker ◽  
Jean-Francois Deconinck ◽  
Luke Mander ◽  
Micha Ruhl ◽  
...  

The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. Presently, Earth’s climate is warming and the frequency of large wildfires appears to be increasing. Recent research has indicated that Quaternary deposits reveal that wildfires respond to orbital forcings; however, to date no study has been able to test whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past. A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles. We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period. Preliminary results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~100,000 years. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing. Supplementary to the charcoal record, a high-resolution clay mineralogy dataset has been generated to further explain the climatic cyclicity observed in the wildfire record regarding the hydrology on land.

2019 ◽  
Author(s):  
Teuntje Parnassia Hollaar ◽  
Sarah Jane Baker ◽  
Jean-Francois Deconinck ◽  
Luke Mander ◽  
Micha Ruhl ◽  
...  

The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. Presently, Earth’s climate is warming and the frequency of large wildfires appears to be increasing. Recent research has indicated that Quaternary deposits reveal that wildfires respond to orbital forcings; however, to date no study has been able to test whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past. A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles. We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period. Preliminary results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~100,000 years. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing. Supplementary to the charcoal record, a high-resolution clay mineralogy dataset has been generated to further explain the climatic cyclicity observed in the wildfire record regarding the hydrology on land.


2020 ◽  
Author(s):  
Teuntje Hollaar ◽  
Sarah Baker ◽  
Jean-Francois Deconinck ◽  
Luke Mander ◽  
Micha Ruhl ◽  
...  

<p>At present Earth’s climate is warming and the frequency of large wildfires appears to be increasing (Westerling and Bryant, 2008). Long term trends in climate and the effect on wildfire are understudied and examining the geological record can aid current understanding of natural variability of wildfire over longer time scales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. Recent research has indicated from Quaternary deposits that wildfires respond to orbital forcings (Daniau et al., 2013). This study tests whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past.</p><p>        A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles.</p><p>        We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period. Our results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~400,000 years. Supplementary to the charcoal record, a high-resolution clay minerology dataset has been generated, which indicates the presence of the 400ky cycle. Decreased hydrology on land, corresponds to increased charcoal production. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing.</p>


2021 ◽  
Vol 268 ◽  
pp. 107125
Author(s):  
Matthieu Carré ◽  
Pascale Braconnot ◽  
Mary Elliot ◽  
Roberta d’Agostino ◽  
Andrew Schurer ◽  
...  

2011 ◽  
Vol 7 (5) ◽  
pp. 3609-3652 ◽  
Author(s):  
J. H. C. Bosmans ◽  
S. S. Drijfhout ◽  
E. Tuenter ◽  
L. J. Lourens ◽  
F. J. Hilgen ◽  
...  

Abstract. In this study we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka), there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.


2012 ◽  
Vol 8 (2) ◽  
pp. 723-740 ◽  
Author(s):  
J. H. C. Bosmans ◽  
S. S. Drijfhout ◽  
E. Tuenter ◽  
L. J. Lourens ◽  
F. J. Hilgen ◽  
...  

Abstract. In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka), there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.


2018 ◽  
Vol 225 ◽  
pp. 139-147 ◽  
Author(s):  
Nicasio T. Jiménez-Morillo ◽  
José A. González-Pérez ◽  
Gonzalo Almendros ◽  
José M. De la Rosa ◽  
Derek C. Waggoner ◽  
...  

2014 ◽  
Vol 50 (5) ◽  
pp. 670-682 ◽  
Author(s):  
Alessandro Amorosi ◽  
Luigi Bruno ◽  
Bruno Campo ◽  
Agnese Morelli

Sign in / Sign up

Export Citation Format

Share Document