scholarly journals Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

Author(s):  
Homayun Mehrabani ◽  
Neil Ray ◽  
Kyle Tse ◽  
Dennis Evangelista

Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g. plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artificial samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttali). The geometric dimensions of the features have only a small (~6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their interaction with surface pattern.

2014 ◽  
Author(s):  
Homayun Mehrabani ◽  
Neil Ray ◽  
Kyle Tse ◽  
Dennis Evangelista

Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g.vplants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artifical samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels,Crassostrea gigas, or on the spines of the Antarctic sea urchinSterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams,Saxidomas nuttali). The geometric dimensions of the features have only a small (~6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and coatings, and their interaction with surface pattern.


2014 ◽  
Author(s):  
Homayun Mehrabani ◽  
Neil Ray ◽  
Kyle Tse ◽  
Dennis Evangelista

Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g. plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artificial samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttali). The geometric dimensions of the features have only a small (~6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their interaction with surface pattern.


2017 ◽  
Vol 22 (11) ◽  
pp. 0-0
Author(s):  
Hua Zhong ◽  
◽  
Xiaolin Fan ◽  
Shuyu Sun ◽  
◽  
...  

1996 ◽  
Vol 118 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Xiaolan Ai ◽  
Herbert S. Cheng

The effect of surface texture on EHL point contact is studied numerically by using the multigrid method. Numerical simulations have been performed for waviness and random roughness with three different orientations, transverse, oblique and longitudinal. Results reveal a strong domination of unidirectional Couette flow in the EHL conjunction. The geometrical variations at inlet of the contact are transported downstream throughout the EHL conjunction. As a consequence, the oblique surface roughness striations are largely distorted, forming nearly longitudinal wavy passages. Results show that the oblique roughness induces local three dimensional EHL pressure fluctuations. The maximum pressure is higher than that of the transverse roughness. For sinusoidal waviness, oblique orientation gives the smallest minimum film thickness as compared with those of longitudinal and transverse waviness.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e588 ◽  
Author(s):  
Homayun Mehrabani ◽  
Neil Ray ◽  
Kyle Tse ◽  
Dennis Evangelista

2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document