scholarly journals Synthesis and anti-tubercular activity of 3-substituted benzothiophene-1,1-dioxides

Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.

2014 ◽  
Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.


1994 ◽  
Vol 59 (1) ◽  
pp. 234-238 ◽  
Author(s):  
Karel Waisser ◽  
Jiří Kuneš ◽  
Alexandr Hrabálek ◽  
Želmíra Odlerová

Oxidation of 1-aryltetrazole-5-thiols afforded bis(1-aryltetrazol-5-yl) disulfides. The compounds were tested for antimycobacterial activity against Mycobacterium tuberculosis, M. kansasii, M. avium and M. fortuitum. In the case of M. tuberculosis, the logarithm of minimum inhibitory concentration showed a parabolic dependence on hydrophobic substituent constants. Although the compounds exhibited low to medium activity, the most active derivative, bis(4-chlorophenyltetrazol-5-yl) disulfide (III) was more effective against atypical strains than are the commercial tuberculostatics used as standards.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohana Rao Anguru ◽  
Ashok Kumar Taduri ◽  
Rama Devi Bhoomireddy ◽  
Malathi Jojula ◽  
Shravan Kumar Gunda

2018 ◽  
Vol 2 (1) ◽  
pp. 14-21
Author(s):  
Safaa Kishk ◽  
Mohamed A. Helal ◽  
Mohamed S. Gomaa ◽  
Ismail Salama ◽  
Samia Moustafa ◽  
...  

2020 ◽  
Vol 17 (11) ◽  
pp. 1422-1431
Author(s):  
Shradheya R.R. Gupta ◽  
Ekta Gupta ◽  
Avnam Ohri ◽  
Sandeep Kumar Shrivastava ◽  
Sumita Kachhwaha ◽  
...  

Background: Mycobacterium tuberculosis is a causative agent of tuberculosis. It is a non-motile, acid-fast, obligatory aerobic bacterium. Finding novel drug targets in Mycobacterium tuberculosis has become extremely important as the bacterium is evolving into a more dangerous multi-drug resistant pathogen. The predominant strains in India belong to the Central-Asian, East- African Indian, and Beijing clad. For the same reason, the whole proteomes of a non-virulent strain (H37Ra), a virulent (H37Rv) and two clinical strains, a Central-Asian clad (CAS/NITR204) and a Beijing clad (CCDC5180) have been selected for comparative study. Selecting a phylogenetically close and majorly studied non-virulent strain is helpful in removing the common and undesired proteins from the study. Objective: The study compares the whole proteome of non-virulent strain with the other three virulent strains to find a unique protein responsible for virulence in virulent strains. It is expected that the drugs developed against identified targets will be specific to the virulent strains. Additionally, to assure minimal toxicity to the host, we also screened the human proteome. Methods: Comparative proteome analysis was used for target identification and in silico validation of identified target protein Rv2466c, identification of the respective ligand of the identified target protein and binding interaction study using Molecular docking and Molecular Dynamic Simulation study were used in this study. Results and Discussion: Finally, eleven proteins were found to be unique in virulent strain only and out of which, Rv2466c (PDB-ID: 4ZIL) was found to be an essential protein and identified as a putative drug target protein for further study. The compound glutathione was found to be a suitable inhibitor for Rv2466c. In this study, we used a comparative proteomics approach to identify novel target proteins. Conclusion: This study is unique as we are assured that the study will move forward the research in a new direction to cure the deadly disease (tuberculosis) caused by Mycobacterium tuberculosis. Rv2466c was identified as a novel drug target and glutathione as a respective ligand of Rv2466c. Discovery of the novel drug target as well as the drug will provide a solution to drug resistance as well as the infection caused by Mycobacterium tuberculosis.


2020 ◽  
Vol 19 (5) ◽  
pp. 300-300 ◽  
Author(s):  
Sorin Avram ◽  
Liliana Halip ◽  
Ramona Curpan ◽  
Tudor I. Oprea

Sign in / Sign up

Export Citation Format

Share Document