scholarly journals A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

Author(s):  
Giuseppe Sappa ◽  
Flavia Ferranti ◽  
Francesco Maria De Filippi

The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

2021 ◽  
Author(s):  
Amy Cleaver ◽  
Heather Jamieson ◽  
Carrie Rickwood ◽  
Philippa Huntsman

Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Antonios Manakos ◽  
Maria Ntona ◽  
Nerantzis Kazakis ◽  
Konstantinos Chalikakis

The present study highlights the importance of geological, hydrogeological, and hydrogeochemical characterization of a karst aquifer in building a conceptual model of the system. The karst system of Krania–Elassona in central Greece was chosen for this application. Hydrogeological research included geological mapping and hydrogeological analysis. Additionally, hydrochemical analysis of water samples was performed in boreholes, rivers, and the system’s main spring. The Krania–Elassona aquifer consists of three horizons of marbles and is characterized by mature karstification. The karst aquifer is characterized by allogenic recharge mainly from the River Deskatis that accounts for up to 92% of the total flow. Groundwater and spring water are generally characterized as good quality and are suitable for irrigation and domestic use. The water type of the spring water is classified as Mg-HCO3. The application of a SARIMA (Seasonal Autoregressive Integrated Moving Average Model) model verified the conceptual model and successfully simulated spring discharge for a two-year period. The results of this study highlight the importance of basic hydrogeological research and the initial conceptualization of karst systems in reliably assessing groundwater vulnerability and modeling.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 11
Author(s):  
Gozzi ◽  
Dakos ◽  
Trevisani ◽  
Buccianti ◽  
Graziano ◽  
...  

River catchments are highly complex systems characterized by several properties such as self-organization, multi-scale variability, hydraulic and topographic gradients, patchiness and heterogeneity, resilience and a hierarchical structure. These features, coupled with several geomorphological, anthropogenic and climatic drivers, are expected to influence the surface water composition over different temporal and spatial scales. The knowledge of these complex interlinks plays a key role in both river basin management and predictability to potential pollution events. Nevertheless, due to the considerable amount of factors involved in the analysis, the unique combination of attributes characterizing each catchment and the lack of data at an adequate scale, it still remains unclear which of the environmental parameters have a major influence on the water chemistry. In this work, the hierarchy of the variability in the chemical composition of 160 water samples collected in 2017 throughout the Tiber River Basin, the largest catchment in Central Italy (17,156 km2), was explored. The results obtained by using advanced statistical methods, including the Compositional Data Analysis, highlighted different sources of variability linked to the geological (low variability) and anthropogenic origin (high variability) of the main solutes. Furthermore, for each sampling site, the corresponding watershed was calculated from the Digital Terrain Model using a Geographical Information System-based elaboration. The aim was to evaluate the relationships between the landscape morphological properties of the watersheds, such as elevation, drainage area, slope or other morphometric indexes and the physical-chemical parameters of the river waters on the basis of different geological and topographical settings of the basin. The outcomes proved to be particularly useful to discriminate between water chemistry mainly influenced by surface run-off processes and that affected by ground water circulation.


Sign in / Sign up

Export Citation Format

Share Document