scholarly journals Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

2013 ◽  
Vol 12 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Patrycja Kuna-Gwoździewicz
2021 ◽  
Vol 16 (2) ◽  
pp. 607-621
Author(s):  
Ayobami Omozemoje Aigberua ◽  
Enetimi Idah Seiyaboh

The environmental menace caused by hydrocarbon releasing activities on water bodies have remained a cause for great concern. Such activities are accompanied by the release of highly toxic and carcinogenic polycyclic aromatic hydrocarbons (PAH), which are easily biomagnified across the food chain, ultimately aggravating adverse health conditions in human. This study was aimed at identifying the most important environmental contributors of PAHs in sediments of the Imiringi river. Owing to the activities of oil facilities among other anthropogenic influences, water bodies are inundated with hydrocarbon pollutants which settle within river bed sediments, thereby, playing an important role in the redistribution of contaminants. The applied diagnostic ratios (Phenanthrene/Anthracene, Fluorene/Fluorene + Pyrene, Fluoranthene/Fluoranthene + Pyrene, pyrogenic index and total index) revealed the presence of mixed source of PAHs (pyrogenic and petrogenic). PAH concentrations ranged from <0.01 to 3,965.4 µg/kg with most detected compounds exceeding regulatory limits. The high molecular mass PAHs (4 - 6 ring HPAHs) represents the primary source showing 94.29% distribution, while the low molecular mass PAHs (2 - 3 ring LPAHs) recorded trace concentrations of about 5.71% of total PAHs. Principal component analysis (PCA) revealed Indeno(1,2,3-cd)pyrene and Dibenz(a,h)anthracene as principal PAH components in the environment. In addition, Pearson correlation showed Benzo(k)fluoranthene and Benzo(b)fluoranthene as the most positively correlating PAH species in sediment. Overall, the midstream section of the river was relatively more polluted than the up and down-river locations. Most notably, HPAHs recorded higher concentrations than the LPAHs. This may be due to intensive agricultural practices such as bush incineration, while waste dumps along the river bank remain tangible pyrogenic PAH contributors. On the other hand, trace amounts of observed petrogenic PAHs in some locations are possibly spill-over’s from oil bunkering activities and infiltrations from nearby oil installations.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Sign in / Sign up

Export Citation Format

Share Document